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ECE408/CS483/CSE408  Spring 2020

Applied Parallel Programming

Lecture 8: Convolution, Constant 
Memory and Constant Caching
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Objective

• To learn convolution, an important parallel 
computation pattern 
– Widely used in signal, image and video processing

– Foundational to stencil computation used in many 
science and engineering applications

– Critical component of Neural Networks and Deep 
Learning

• Important techniques
– Taking advantage of cached memories
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Convolution Applications

• A popular array operation that is used in various 
forms in signal processing, digital recording, 
image processing, video processing, computer 
vision, and machine learning. 

• Convolution is often performed as a filter that 
transforms signals and pixels into more desirable 
values. 
– Some filters smooth out the signal values so that one 

can see the big-picture trend 

– Others like Gaussian filters can be used to sharpen 
boundaries and edges of objects in images.. 
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Convolution Computation

• An array operation where each output data 
element is a weighted sum of a collection of 
neighboring input elements

• The weights used in the weighted sum 
calculation are defined by an input mask array, 
commonly referred to as the convolution kernel
– we will refer to these mask arrays as convolution 

masks or convolution filters to avoid confusion. 

– The same convolution mask is typically used for all 
elements of the array.
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1D Convolution Example
• Commonly used for audio processing

– Mask_Width is usually an odd number of elements for 
symmetry (5 in this example)

– Mask_Radius is the number of elements used in 
convolution on each side of the pixel being calculated 
(2 in this example).

• Calculation of P[2]:
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1D Convolution Example
- more on inside elements

• Calculation of P[3]
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1D Convolution Boundary Condition

• Calculation of output elements near the 
boundaries (beginning and end) of the input array 
need to deal with “ghost” elements
– Different policies (0, replicates of boundary values, etc.)
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__global__ void convolution_1D_basic_kernel(float *N, float *M, float *P,
int Mask_Width, int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

float Pvalue = 0;
int N_start_point = i - (Mask_Width/2);
for (int j = 0; j < Mask_Width; j++) {
if (N_start_point + j >= 0 && N_start_point + j < Width) {
Pvalue += N[N_start_point + j]*M[j];

}
}
P[i] = Pvalue;

}

A 1D Convolution Kernel with 
Boundary Condition Handling

• This kernel forces all elements outside the valid 
data index range to 0
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© David Kirk/NVIDIA and Wen-mei W. Hwu       
ECE408/CS483/ECE498al University of Illinois, 2007-2018

9

1 2 3 2 1

2 3 4 3 2

3 4 5 4 3

2 3 4 3 2

1 2 3 2 1

0 0 0 0 0

0 0 4 6 6

0 0 10 12 12

0 0 12 12 10

0 0 12 10 6

M

N
P

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1 2 3 4 5

112 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 5

4

2D Convolution Boundary Condition

© David Kirk/NVIDIA and Wen-mei W. Hwu       
ECE408/CS483/ECE498al University of Illinois, 2007-2018

10

2D Convolution – Ghost Cells
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Access Pattern for M

• Elements of M are called mask (kernel, filter) 
coefficients (weights)
– Calculation of all output P elements needs M

– M is not changed during grid execution 

• Bonus - M elements are accessed in the same 
order when calculating all P  elements

• M is a good candidate for Constant Memory
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Programmer View of  CUDA Memories
(Review)

• Each thread can:
– Read/write per-thread 

registers (~1 cycle)

– Read/write per-block 
shared memory (~5 
cycles)

– Read/write per-grid 
global memory (~500 
cycles)

– Read/only per-grid
constant memory (~5 
cycles with caching)

Grid

Global Memory

Block (0, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory
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Memory Hierarchies

• Review: If we had to go to global memory to 
access data all the time, the execution speed of 
GPUs would be limited by the global memory 
bandwidth
– We saw the use of shared memory (scratchpad) in 

tiled matrix multiplication.

• Another important solution: Caches
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Caches Store Lines of Memory

Recall: memory bursts 
• contain around 1024 bits (128B) from
• consecutive (linear) addresses.
• Let’s call a single burst a line.

What’s a cache?
• An array of cache lines (and tags).
• Memory read produces a line,
• cache stores a copy of the line, and
• tag records line’s memory address.
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Memory Accesses Show Locality

An executing program

• loads and store data from memory.

• Consider sequence of addresses accessed.

Sequence usually shows two types of locality:

– spatial: accessing X implies 
accessing X+1 (and X+2, and so forth) soon

– temporal: accessing X implies 
accessing X again soon

(Caches improve performance for both types.)
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Caches Can’t Hold Everything

Caches are smaller than memory.

When cache is full,

• must make room for new line,

• usually by discarding least recently used line.
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GPU Has Constant and L1 Caches

To support writes (modification of lines),

• changes must be copied back to memory, and

• cache must track modification status.

• L1 cache in GPU (for global memory accesses) 
supports writes.

Cache for constant / texture memory

• Special case: lines are read-only

• Enables higher-throughput access than L1
for common GPU kernel access patterns.
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Cache vs. Scratchpad (GPU Shared Mem.)

• Caches vs. shared memory

– Both on chip*, with similar performance

– (As of Volta generation, both using the same 
physical resources, allocated dynamically!)

What’s the difference?

• Programmer controls shared memory 
contents (called a scratchpad)

• Microarchitecture automatically determines
contents of cache.

*Static RAM, not DRAM, by the way—see ECE120/CS233.

How to Use Constant Memory

Host code is similar to previous versions, but…

Allocate device memory for M (the mask)

• outside of all functions
• using __constant__

(tells GPU that caching is safe).

For copying to device memory, use

• cudaMemcpyToSymbol(dst, src, size)

• with destination defined as above.
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Example of Host Code
(MASK_WIDTH is the size of the mask.)

// outside of any kernel/function

static __constant__ float Mc[MASK_WIDTH][MASK_WIDTH];

// allocate N, P, initialize N elements, copy N to Nd

// in host code:

float* M; // host memory copy of mask

// initialize M

cudaMemcpyToSymbol(Mc, M, 

MASK_WIDTH * MASK_WIDTH * sizeof(M[0]));

ConvolutionKernel<<<dimGrid, dimBlock>>>(Nd, Pd);

// (note that file-scope Mc is visible to kernel)
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ANY MORE QUESTIONS?
READ CHAPTER 7
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