
1

1

ECE408/CS483/CSE408 Spring 2020

Applied Parallel Programming

Lecture 8: Convolution, Constant
Memory and Constant Caching

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

Objective

• To learn convolution, an important parallel
computation pattern
– Widely used in signal, image and video processing

– Foundational to stencil computation used in many
science and engineering applications

– Critical component of Neural Networks and Deep
Learning

• Important techniques
– Taking advantage of cached memories

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

2

Convolution Applications

• A popular array operation that is used in various
forms in signal processing, digital recording,
image processing, video processing, computer
vision, and machine learning.

• Convolution is often performed as a filter that
transforms signals and pixels into more desirable
values.
– Some filters smooth out the signal values so that one

can see the big-picture trend

– Others like Gaussian filters can be used to sharpen
boundaries and edges of objects in images..

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

3

Convolution Computation

• An array operation where each output data
element is a weighted sum of a collection of
neighboring input elements

• The weights used in the weighted sum
calculation are defined by an input mask array,
commonly referred to as the convolution kernel
– we will refer to these mask arrays as convolution

masks or convolution filters to avoid confusion.

– The same convolution mask is typically used for all
elements of the array.

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

4

1 2

3 4

2

1D Convolution Example
• Commonly used for audio processing

– Mask_Width is usually an odd number of elements for
symmetry (5 in this example)

– Mask_Radius is the number of elements used in
convolution on each side of the pixel being calculated
(2 in this example).

• Calculation of P[2]:

3 4 5 4 3 3 8 15 16 15

N[0] P

3 8 57 16 151 2 3 4 5 6 7 3 3

N[3]N[1] N[2] N[5]N[4] N[6]

M[0] M[3]M[1]M[2] M[4]

P[0] P[3]P[1] P[2] P[5]P[4] P[6]N

M

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018 5

3 4 5 4 3 6 12 20 20 18

N[0] P

3 8 57 76 151 2 3 4 5 6 7 3 3

N[3]N[1] N[2] N[5]N[4] N[6]

M[0] M[3]M[1]M[2] M[4]

P[0] P[3]P[1] P[2] P[5]P[4] P[6]N

M

1D Convolution Example
- more on inside elements

• Calculation of P[3]

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

6

3 4 5 4 3 0 4 10 12 12

M

N P

3 38 57 16 151 2 3 4 5 6 7 3 30

N[0] N[3]N[1] N[2] N[5]N[4] N[6]

Filled in

M[0] M[3]M[1]M[2] M[4]

P[0] P[3]P[1] P[2] P[5]P[4] P[6]

1D Convolution Boundary Condition

• Calculation of output elements near the
boundaries (beginning and end) of the input array
need to deal with “ghost” elements
– Different policies (0, replicates of boundary values, etc.)

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

7

__global__ void convolution_1D_basic_kernel(float *N, float *M, float *P,
int Mask_Width, int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

float Pvalue = 0;
int N_start_point = i - (Mask_Width/2);
for (int j = 0; j < Mask_Width; j++) {
if (N_start_point + j >= 0 && N_start_point + j < Width) {
Pvalue += N[N_start_point + j]*M[j];

}
}
P[i] = Pvalue;

}

A 1D Convolution Kernel with
Boundary Condition Handling

• This kernel forces all elements outside the valid
data index range to 0

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

8

5 6

7 8

3

1 2 3 2 1

2 3 4 3 2

3 4 5 4 3

2 3 4 3 2

1 2 3 2 1

1 4 9 8 5

4 9 16 15 12

9 16 25 24 21

8 15 24 21 16

5 12 21 16 5

M

N P

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1 2 3 4 5

2 3 4 5 6

3 4 321 6 7

4 5 6 7 8

5 6 7 8 5

2D Convolution

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

9

1 2 3 2 1

2 3 4 3 2

3 4 5 4 3

2 3 4 3 2

1 2 3 2 1

0 0 0 0 0

0 0 4 6 6

0 0 10 12 12

0 0 12 12 10

0 0 12 10 6

M

N
P

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1 2 3 4 5

112 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 5

4

2D Convolution Boundary Condition

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

10

2D Convolution – Ghost Cells

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

11

0 0 0 0 0

0 3 4 5 6

0 2 3 4 5

0 3 5 6 7

0 1 1 3 1

1 2 3 2 1

2 3 4 3 2

3 4 5 4 3

2 3 4 3 2

1 2 3 2 1

0 0 0 0 0

0 9 16 15 12

0 8 15 16 15

0 9 20 18 14

0 2 3 6 1

179

0 ghost cells

(apron cells, halo cells)
M

N P
Access Pattern for M

• Elements of M are called mask (kernel, filter)
coefficients (weights)
– Calculation of all output P elements needs M

– M is not changed during grid execution

• Bonus - M elements are accessed in the same
order when calculating all P elements

• M is a good candidate for Constant Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

12

9 10

11 12

4

13

Programmer View of CUDA Memories
(Review)

• Each thread can:
– Read/write per-thread

registers (~1 cycle)

– Read/write per-block
shared memory (~5
cycles)

– Read/write per-grid
global memory (~500
cycles)

– Read/only per-grid
constant memory (~5
cycles with caching)

Grid

Global Memory

Block (0, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

14

Memory Hierarchies

• Review: If we had to go to global memory to
access data all the time, the execution speed of
GPUs would be limited by the global memory
bandwidth
– We saw the use of shared memory (scratchpad) in

tiled matrix multiplication.

• Another important solution: Caches

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

15

Caches Store Lines of Memory

Recall: memory bursts
• contain around 1024 bits (128B) from
• consecutive (linear) addresses.
• Let’s call a single burst a line.

What’s a cache?
• An array of cache lines (and tags).
• Memory read produces a line,
• cache stores a copy of the line, and
• tag records line’s memory address.

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

16

Memory Accesses Show Locality

An executing program

• loads and store data from memory.

• Consider sequence of addresses accessed.

Sequence usually shows two types of locality:

– spatial: accessing X implies
accessing X+1 (and X+2, and so forth) soon

– temporal: accessing X implies
accessing X again soon

(Caches improve performance for both types.)

13 14

15 16

5

Caches Can’t Hold Everything

Caches are smaller than memory.

When cache is full,

• must make room for new line,

• usually by discarding least recently used line.

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

17

GPU Has Constant and L1 Caches

To support writes (modification of lines),

• changes must be copied back to memory, and

• cache must track modification status.

• L1 cache in GPU (for global memory accesses)
supports writes.

Cache for constant / texture memory

• Special case: lines are read-only

• Enables higher-throughput access than L1
for common GPU kernel access patterns.

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

18

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

19

Cache vs. Scratchpad (GPU Shared Mem.)

• Caches vs. shared memory

– Both on chip*, with similar performance

– (As of Volta generation, both using the same
physical resources, allocated dynamically!)

What’s the difference?

• Programmer controls shared memory
contents (called a scratchpad)

• Microarchitecture automatically determines
contents of cache.

*Static RAM, not DRAM, by the way—see ECE120/CS233.

How to Use Constant Memory

Host code is similar to previous versions, but…

Allocate device memory for M (the mask)

• outside of all functions
• using __constant__

(tells GPU that caching is safe).

For copying to device memory, use

• cudaMemcpyToSymbol(dst, src, size)

• with destination defined as above.

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

20

17 18

19 20

6

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

Example of Host Code
(MASK_WIDTH is the size of the mask.)

// outside of any kernel/function

static __constant__ float Mc[MASK_WIDTH][MASK_WIDTH];

// allocate N, P, initialize N elements, copy N to Nd

// in host code:

float* M; // host memory copy of mask

// initialize M

cudaMemcpyToSymbol(Mc, M,

MASK_WIDTH * MASK_WIDTH * sizeof(M[0]));

ConvolutionKernel<<<dimGrid, dimBlock>>>(Nd, Pd);

// (note that file-scope Mc is visible to kernel)

21

ANY MORE QUESTIONS?
READ CHAPTER 7

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al University of Illinois, 2007-2018

22

21 22

