ECE408/CS483/CSE408 Spring 2018

Applied Parallel Programming

Lectures 5:
Locality and Tiled Matrix
Multiplication

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
ECE408/CS483/ University of Illinois at Urbana-Champaign

Objective

» To learn to evaluate the performance
implications of global memory accesses

* To prepare for MP-3: tiled matrix multiplication

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Cl i

Kernel Invocation (Host-side Code)

/I Setup the execution configuration
/I TILE_WIDTHis a i tant

dim3 dimGrid(ceil(Width/(TILE_WIDTH*1.0)), X dimension |
cel(Width/(TILE_WIDTH*1.0)), 1);
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

You need to extend the code to handle
rectangular matrix in MP-2!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ 3
University of [llinois at Urbana-Champaign

A Simple Matrix Multiplication Kernel

(Simplified Dimension and Syntax!)
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)

// Calculate the row index of the d_P element and d M

int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column idenx of d P and d N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k){
Pvalue += d M[Row] [k] * d N[k][Col];
}
d P[Row] [Col] = Pvalue;

}

} © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
ECE408/CS483/ University of Illinois at Urbana-Champaign

How about performance on a device
with 150 GB/s memory bandwidth?

« All threads access global memory for
their input matrix element;
— Two memory accesses\8 bytes) Block (0, 0) Block (1, 0)
per single-precision floatl
multiply-add
— Two operands need to be fetched
for each two floating-point

operations (* and +) ’ " ’ ’

— Each floating-point operation e,
needs 4 bytes of operand ’

— 150 GB/s limits the code at 37.5

(150/4) GFLOPS

» The actual code runs at about 25

GFLOPS

* Need to drastically cut down memory

accesses to get closer to the peak of

more than 1,000 GFLOPS

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
ECE408/C5483/ University of Illinois at Urbana-Champaign

Grid

-

Thread (1, 0)

1 1 1

Thread (0, 0) | Thread (1, 0)

[II

Tiled Matrix-Matrix Multiplication
using
Shared Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

A Common Programming Strategy

* Global memory is implemented with DRAM - slow

» A profitable way of performing computation on the
device is to tile the input data to take advantage of
fast shared memory:

— Partition data into subsets (tiles) that fit into the (smaller
but faster) shared memory

— Handle each data subset with one thread block by:

» Loading the subset from global memory to shared memory,
using multiple threads to exploit memory-level parallelism

» Performing the computation on the subset from shared
memory; each thread can efficiently access any data element

» Copying results from shared memory to global memory
— Tiles are also called blocks in the literature

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
Lniversity of Tlingic at Tihana C] i

Declaring Shared Memory Arrays

__global__ void MatrixMulKernel (float* M, float* N, float* P, int Width)
{

shared float subTileM[TILE WIDTH] [TILE WIDTH];
float subTileN[TILE WIDTH] [TILE WIDTH];

—_shared__

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
jversi inois at Urbana-Ct i

Shared Memory Tiling Basic Idea

in

Global Memory

Global Memory

in

On-chip Memory

© David Kirk/NVIDIA and
University of Illinois at Urbana-

007-2018 ECE408/

Outline of Technique

* |dentify a tile of global data that are accessed by
multiple threads

* Load the tile from global memory into on-chip
memory

» Have the multiple threads to access their data
from the on-chip memory

* Move on to the next block/tile

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

Idea: Place global memory data into
Shared Memory for reuse

* Each input element is
used in claculating by
WIDTH P elements.

* Load each element into
Shared Memory and
have several threads

use the local version ‘
reduce the memory ~ Row
bandwidth @ — I

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483
University of Illinois at Urbana-Cl i

Tiled Multiply

» Break up the execution of the

tx
012 TILE_WIDTH-1
[ATN——)

kernel into phases so that the
data accesses in each phase
are focused on one subset (tile) l
of Mand N

0 H

1
. zj 1
TILE_WIDTH! I e

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
ECE. 83/ 1 Iniversi inqi hana.Cl i

11

12

Loading a Tile

+ All threads in a block participate

— Each thread loads one M element and one N element
in basic tiling code

+ Assign the loaded element to each thread such
that the accesses within each warp is coalesced
(more later).

13
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Cl i
13
Work for Block (0,0)
Threads use shared memory data in step 0.
NO,O NO,l NO,Z NO,S
Shared Memory] | J°[f |
Nl,() Nl,l N1,2 N1,3
0 1,1
NZ,O N2,1 NZ,Z N2,3
N3,0 N3,1 N3,2 N3,3
Shared Memory
MO,O MO,I MO,Z MO,3 AT EALNNT 200 ﬂﬂ, PO,Z P0,3
MI,O Ml,l M1,2 MI,S AT RALTN] .;1 Q 'fl, Pl,Z P1,3
MZ,O Mz,l MZ,Z M2,3 PZ,O Pz,l PZ,Z P2,3
M3,0 M3,1 M3,2 M3,3 PS,O PS,I PS,Z P3,3
15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

Work for Block (0,0)

Shared Memory
N B N,
1\‘:1,0 Jll 1\"12 }JIS PIIO\I\ILI
N2 [Nai N2z [Nos
N30 |Ns1|Naz2 [Nss
Shared Memory
Moo Methoa Mo, h‘”"'y‘“ Poo | Poi | Po2| Pos
Mo [Mo oM, a“"“'y“ Pio| Pri|Pi2| Pis
My My M55 M, 5 Pyg | Pyy | Paa [Pas
Mo Ms,1fMs2 My P3g | P3| Pz | Pss
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 "
juersi inois at Urbana-Champai
14
Work for Block (0,0)
Threads use shared memory data in step 1.
Noo [No,1 [Noz2 [Nos o INoo NG
NI,D Nl,l NI,Z N1,3 0 L
Ny [Nai [No2 [Nos
N30 |N3,1 N3z [Nss
SM
Mo,0|Mo,1|Mo2| Mo 5 My, | Mz 20 04| Po- | Pos
MI,O Ml,l MI,Z M1,3 MI,O ALl :lﬂ Pl, Pl,z P1,3
Mp0| M1 |Mz2| My 5 Pyo | Po1|Paz | Pos
M3,0 M3,1 M3,Z M3,3 P3,0 P3,1 P3,2 P3,3
16

15

16

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018

inois at Urbana-Ct

17

Work for Block (0,0)

No,o|No1|No2|Nos
Nyo|Npt NG [Ny Shared Memory
Nao | NaslNoo N Ihso N, 5

Shared Memory
My0| M1 | Mo [Me Ivzﬂ"M“ Poo | Po1 | Poz2 | Pos
M, 0|My M1, |M M> Nﬁ"-ﬁ Pio | Pri| P12 | Pis
M| MM, M, 5 Pyo [Po1|Pap [Pas
M;(M;1|M;,(M;5 P3| P31 | Paz | Pas

17

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
i i inois at Urbana-C] i

Loading an Input Tile O

012 ;%EiwlDTH-1
|0 N —)

18

Work for Block (0,0)

Threads use shared memory data in

step 2.

Noo [No1|No2 | Nos

NI,O NI,] Nl,z N1,3

Noo [Ny Nao |Nys SM W

N3 (N3 IN;2 | N33 el

SM
Mo,0|Mo,1|Mo2 | Mo3 MUZﬂZ'_H‘ oob [Poz | Pos
My oMy M, M, 5 My ”13‘ AR PR DN
My My M5 M, 5 Py | Po | P | Pos
M;0(M;,|M;,(M; 5 P30 | P31 | Paz | Pas
18

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
jversi inois at Urbana-Ct i

Tile 0 2D indexing for each thread:
M[Row] [tx]
N[ty] [Col]
0
3
ty
TILE_WIDTH
© David Kirk/NVIDIA and Wen-mei W. ku, 007-2018 ECE408/CS483,

University of Tllinois at Urbana-Cl

19

Loading an Input Tile 1

012 ;EEiwlDTH-1
| NN —Y

Accessing tile 1 in 2D indexing:

M[Row] [1*TILE WIDTH+tx]
N[1*TILE WIDTH+ty] [Col]

0
1
t 2
TILE_WIDTH|
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483,

University of Illinois at Urbana-Champaign

20

Loading an Input Tile m

However, recall that M and N are dynamically allocated

012 ;%EiwlDTH»1
and can only use 1D indexing: LLL___LI

M[Row] [m*TILE_WIDTH+tx]
M[Row*Width + m*TILE WIDTH + tx]

N[m*TILE_WIDTH+ty] [Col]
N[(m*TILE_WIDTH+ty) * Width + Col]

0

3
ty j
TILE_WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 200

UT0 DO LU0/ o400

University of Illinois at Urbana-Champaign

21
Barrier Synchronization
* An API function call in CUDA
— __syncthreads()
« All threads in the same block must reach the
__syncthreads() before any can move on
+ Best used to coordinate tiled algorithms
— To ensure that all elements of a tile are loaded
— To ensure that all elements of a tile are consumed
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ 3
University of Illinois at Urbana-Champaign

Accessing a Tile

To perform the k" step of the product within the tile: 012 R(E WIDTHA
w1

subTileM[ty] [k]

subTileN
subTileN[k] [tx] ‘
subTileM i
. £
2
TILE_WIDTH1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECEA08/CS483/
o '

itvof Ilingis at Irbana-Ck

22

23

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread N-3

Thread N-2

Thread N-1

24
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

24

Tiled Matrix Multiplication Kernel

__global__ void MatrixMulKernel (float* M, float* N, float* P, int Width)

1. _ shared float subTileM[TILE_WIDTH] [TILE WIDTH];
2. _ shared float subTileN[TILE WIDTH] [TILE WIDTH];
3. int bx blockIdx.x; int by blockIdx.y;

4. int tx threadIdx.x; int ty threadIdx.y;
// Identify the row and column of the P element to work on
5. int Row = by * TILE WIDTH + ty;
6. int Col = bx * TILE WIDTH + tx;
7. float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
// The code assumes that the Width is a multiple of TILE_WIDTH!

8. for (int m = 0; m < Width/TILE WIDTH; ++m) {
// Collaborative loading of M and N tiles into shared memory

9. subTileM[ty] [tx] = M[Row*Width + m*TILE_WIDTH+tx];
10. subTileN[ty] [tx] = N[(m*TILE_WIDTH+ty) *Width+Col];
11. __syncthreads () ;

12. for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue += subTileM[ty] [k] * subTileN[k][tx];
14. __syncthreads () ;

15. 1}

16. P[Row*Width+Col] = Pvalue;

25

}
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
Lniversity of Tlingic at Tzhana Cl i

{

Compare with Basic MM Kernel

global_ _ void MatrixMulKernel (float* M, float* N, float* P, int Width)

// Calculate the row index of the P element and M
int Row = blockIdx.y * blockDim.y + threadIdx.y;
// Calculate the column index of P and N

int Col = blockIdx.x * blockDim.x + threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;

// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
Pvalue += M[Row*Width+k] * N[k*Width+Col];

P[Row*Width+Col] = Pvalue;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/ 26
University of Illinois at Urbana-Champaign

25

26

Shared Memory and Threading

» Each SM in Maxwell has 64KB shared memory (48KB
max per block)
— Shared memory size is implementation dependent!

— For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB
of shared memory.
« Shared memory can potentially support up to 32 active blocks
* The threads per SM constraint (2,048) will limit the number of blocks to 8
* This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256
threads per block)
— TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory
usage per thread block,
« Shared memory can potentially support up to 8 active blocks
* The threads per SM constraint (2,048) will limit the number of blocks to 2

+ This allows up to 2*2,048 = 4,096 pending loads (2 per thread, 1024 threads
per block)

27
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/

University of Illinois at Urbana-Champaign

Memory Bandwidth Consumption

+ Using 16x16 tiling, we reduce the global memory by a
factor of 16
— Each operand is now used by 16 floating-point operations

— The 150GB/s bandwidth can now support (150/4)*16 = 600
GFLOPS!

» Using 32x32 tiling, we reduce the global memory
accesses by a factor of 32
— Each operand is now used by 32 floating-point operations
— The 150 GB/s bandwidth can now support (150/4)*32 = 1,200
GFLOPS!
— The memory bandwidth is no longer a limiting factor for

performance!

28
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/

University of Illinois at Urbana-C]

27

28

Device Query

* Number of devices in the system
int dev_count;
cudaGetDeviceCount(&dev_count);
» Capability of devices
cudaDeviceProp dev_prop;
for (i = 0; i < dev_count; i++) {
cudaGetDeviceProperties(&dev_prop, i);
/I decide if device has sufficient resources and capabilities
}
» cudaDeviceProp is a built-in C structure type
— dev_prop.dev_prop.maxThreadsPerBlock
— Dev_prop.sharedMemoryPerBlock

- 29
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/

University of Illinois at Urbana-Champaign

29

ANY MORE QUESTIONS?
READ CHAPTER 4!

30
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/

University of Illinois at Urbana-Champaign

30

