
1

ECE408/CS483/CSE408 Spring 2018

Applied Parallel Programming

Lectures 5:
Locality and Tiled Matrix

Multiplication

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
ECE408/CS483/ University of Illinois at Urbana-Champaign

1

Objective

• To learn to evaluate the performance
implications of global memory accesses

• To prepare for MP-3: tiled matrix multiplication

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

// Setup the execution configuration
// TILE_WIDTH is a #define constant

dim3 dimGrid(ceil(Width/(TILE_WIDTH*1.0)),
ceil(Width/(TILE_WIDTH*1.0)), 1);

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Kernel Invocation (Host-side Code)

3

You need to extend the code to handle
rectangular matrix in MP-2!

X dimension

A Simple Matrix Multiplication Kernel
(Simplified Dimension and Syntax!)

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{
// Calculate the row index of the d_P element and d_M

int Row = blockIdx.y*blockDim.y+threadIdx.y;
// Calculate the column idenx of d_P and d_N

int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k){
Pvalue += d_M[Row][k] * d_N[k][Col];

}
d_P[Row][Col] = Pvalue;
}

} © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
ECE408/CS483/ University of Illinois at Urbana-Champaign

4

1 2

3 4

2

5

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

How about performance on a device
with 150 GB/s memory bandwidth?

• All threads access global memory for
their input matrix elements

– Two memory accesses (8 bytes)
per single-precision floating point
multiply-add

– Two operands need to be fetched
for each two floating-point
operations (* and +)

– Each floating-point operation
needs 4 bytes of operand

– 150 GB/s limits the code at 37.5
(150/4) GFLOPS

• The actual code runs at about 25
GFLOPS

• Need to drastically cut down memory
accesses to get closer to the peak of
more than 1,000 GFLOPS

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
ECE408/CS483/ University of Illinois at Urbana-Champaign

6

Tiled Matrix-Matrix Multiplication
using

Shared Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

7

A Common Programming Strategy

• Global memory is implemented with DRAM - slow

• A profitable way of performing computation on the
device is to tile the input data to take advantage of
fast shared memory:
– Partition data into subsets (tiles) that fit into the (smaller

but faster) shared memory

– Handle each data subset with one thread block by:
• Loading the subset from global memory to shared memory,

using multiple threads to exploit memory-level parallelism

• Performing the computation on the subset from shared
memory; each thread can efficiently access any data element

• Copying results from shared memory to global memory

– Tiles are also called blocks in the literature
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

Declaring Shared Memory Arrays

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
ECE408/CS483/ University of Illinois at Urbana-Champaign

8

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)
{

__shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];
__shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];

5 6

7 8

3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

Shared Memory Tiling Basic Idea

Thread 1 Thread 2 …

in

Global Memory

Thread 1 Thread 2 …

Global Memory

in

On-chip Memory

9

Outline of Technique

• Identify a tile of global data that are accessed by
multiple threads

• Load the tile from global memory into on-chip
memory

• Have the multiple threads to access their data
from the on-chip memory

• Move on to the next block/tile

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

10

11

Idea: Place global memory data into
Shared Memory for reuse

• Each input element is
used in claculating by
WIDTH P elements.

• Load each element into
Shared Memory and
have several threads
use the local version to
reduce the memory
bandwidth

M

N

P

W
ID
T
H

W
ID
T
H

WIDTH WIDTH

Row

Col

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

12

M

N

P

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL
E
_W

ID
T
H

T
IL
E
_W

ID
T
H

T
IL
E
_W

ID
T
H
E

W
ID
T
H

W
ID
T
H

Tiled Multiply

• Break up the execution of the
kernel into phases so that the
data accesses in each phase
are focused on one subset (tile)
of M and N

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
ECE408/CS483/ University of Illinois at Urbana-Champaign

9 10

11 12

4

Loading a Tile

• All threads in a block participate
– Each thread loads one M element and one N element

in basic tiling code

• Assign the loaded element to each thread such
that the accesses within each warp is coalesced
(more later).

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

13

Work for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

14
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
ECE408/CS483/ University of Illinois at Urbana-Champaign

Work for Block (0,0)
Threads use shared memory data in step 0.

Shared Memory

Shared Memory

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

15

Work for Block (0,0)
Threads use shared memory data in step 1.

SM

SM

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
ECE408/CS483/ University of Illinois at Urbana-Champaign

16

13 14

15 16

5

N3,0

Work for Block (0,0)

17
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
ECE408/CS483/ University of Illinois at Urbana-Champaign

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N1,3

Shared Memory

Shared Memory

Work for Block (0,0)
Threads use shared memory data in step 2.

SM

18
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018
ECE408/CS483/ University of Illinois at Urbana-Champaign

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

SM

N3,0

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N1,3

19

M

N

P

TILE_WIDTH

WidthWidth

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

T
IL
E
_W

ID
T
H

T
IL
E
_W

ID
T
H

T
IL
E
_W

ID
T
H
E

W
id

th
W

id
th

Loading an Input Tile 0

Tile 0 2D indexing for each thread:

M[Row][tx]
N[ty][Col]

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

ty
tx

20

M

N

P

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

T
IL
E
_W

ID
T
H

T
IL
E
_W

ID
T
H

T
IL
E
_W

ID
T
H
E

W
ID
T
H

W
ID
T
H

Loading an Input Tile 1

Accessing tile 1 in 2D indexing:

M[Row][1*TILE_WIDTH+tx]
N[1*TILE_WIDTH+ty][Col]

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

17 18

19 20

6

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

21

M

N

P

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

T
IL
E
_W

ID
T
H

T
IL
E
_W

ID
T
H

T
IL
E
_W

ID
T
H
E

W
ID
T
H

W
ID
T
H

Loading an Input Tile m
However, recall that M and N are dynamically allocated
and can only use 1D indexing:

M[Row][m*TILE_WIDTH+tx]
M[Row*Width + m*TILE_WIDTH + tx]

N[m*TILE_WIDTH+ty][Col]
N[(m*TILE_WIDTH+ty) * Width + Col]

m

m

22

P

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

tx
01 TILE_WIDTH-12

ty
2
1
0

TILE_WIDTH-1

T
IL
E
_W

ID
T
H

T
IL
E
_W

ID
T
H

T
IL
E
_W

ID
T
H
E

W
ID
T
H

W
ID
T
H

Accessing a Tile
To perform the kth step of the product within the tile:

subTileM[ty][k]

subTileN[k][tx]

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

subTileM

subTileN

Barrier Synchronization

• An API function call in CUDA
– __syncthreads()

• All threads in the same block must reach the
__syncthreads() before any can move on

• Best used to coordinate tiled algorithms
– To ensure that all elements of a tile are loaded

– To ensure that all elements of a tile are consumed

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

23

…

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

…
Thread N-3

Thread N-2

Thread N-1

Time

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

24

21 22

23 24

7

25

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)
{
1. __shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];
2. __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the P element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;
7. float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
// The code assumes that the Width is a multiple of TILE_WIDTH!

8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Collaborative loading of M and N tiles into shared memory

9. subTileM[ty][tx] = M[Row*Width + m*TILE_WIDTH+tx];
10. subTileN[ty][tx] = N[(m*TILE_WIDTH+ty)*Width+Col];
11. __syncthreads();
12. for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += subTileM[ty][k] * subTileN[k][tx];
14. __syncthreads();
15. }
16. P[Row*Width+Col] = Pvalue;
}
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

Compare with Basic MM Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)
{
// Calculate the row index of the P element and M
int Row = blockIdx.y * blockDim.y + threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x * blockDim.x + threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;

// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)

Pvalue += M[Row*Width+k] * N[k*Width+Col];

P[Row*Width+Col] = Pvalue;
}

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

26

27

Shared Memory and Threading
• Each SM in Maxwell has 64KB shared memory (48KB

max per block)
– Shared memory size is implementation dependent!

– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB
of shared memory.

• Shared memory can potentially support up to 32 active blocks

• The threads per SM constraint (2,048) will limit the number of blocks to 8

• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256
threads per block)

– TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory
usage per thread block,

• Shared memory can potentially support up to 8 active blocks

• The threads per SM constraint (2,048) will limit the number of blocks to 2

• This allows up to 2*2,048 = 4,096 pending loads (2 per thread, 1024 threads
per block)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

Memory Bandwidth Consumption

• Using 16x16 tiling, we reduce the global memory by a
factor of 16
– Each operand is now used by 16 floating-point operations

– The 150GB/s bandwidth can now support (150/4)*16 = 600
GFLOPS!

• Using 32x32 tiling, we reduce the global memory
accesses by a factor of 32
– Each operand is now used by 32 floating-point operations

– The 150 GB/s bandwidth can now support (150/4)*32 = 1,200
GFLOPS!

– The memory bandwidth is no longer a limiting factor for
performance!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

28

25 26

27 28

8

Device Query
• Number of devices in the system

int dev_count;

cudaGetDeviceCount(&dev_count);

• Capability of devices
cudaDeviceProp dev_prop;

for (i = 0; i < dev_count; i++) {

cudaGetDeviceProperties(&dev_prop, i);

// decide if device has sufficient resources and capabilities

}

• cudaDeviceProp is a built-in C structure type
– dev_prop.dev_prop.maxThreadsPerBlock

– Dev_prop.sharedMemoryPerBlock

– …
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

29

ANY MORE QUESTIONS?
READ CHAPTER 4!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign

30

29 30

