Background: Shared Memory Tiling Not Enough

Convolutional neural network (CNN) layers
• can be transformed into dense matrix multiplications.
• Linear algebra libraries then use a range of techniques to obtain good performance,
• of which you can get about 60%
• using the shared memory tiling taught in ECE408/CS483.

You may enjoy applying what you learn here in this context, especially if you already have code from 408.
Objective

• To learn more advanced tiling techniques
 – used in ultra-high-performance dense linear algebra libraries,
 – by placing data tiles in registers to enhance available data access bandwidth to the compute units, and
 – by understanding tradeoffs in use of on-chip memory.
Registers are Fast But Per-Thread

GPU chips have both registers and shared memory. In the last lecture, we compared their characteristics.

Registers offer

- **low latency** and **high throughput**,
- but are **private to each thread**, so
- **must be loaded serially** by each thread, and
- **register tiling requires thread coarsening**.
Shared Memory is Slower But More Flexible

Shared memory offers
- comparable latency, lower throughput (but still much higher than global memory)
- visible to threads in a block, so
- can be loaded cooperatively, and
- does not require thread coarsening, but
- does need to be moved to registers before use.
Tile Differently in Different Dimensions!

The best option?

Use both.

• Hardware **paths** are **separate**, and **throughputs** can be **combined**.
• To do so,
 – we typically **use both types of tiling**
 – for distinct dimensions of multidimensional data.
Review Dense Matrix Multiplication

Given two $W \times W$ matrices, M and N,

- we can multiply M by N
- to compute a third $W \times W$ matrix, P:

$$P = MN$$

In terms of the elements of P, matrix multiplication implies computing…

$$P_{ij} = \sum_{k=1}^{W} M_{ik} N_{kj}$$
Visualize the Computation

\[P_{ij} = \sum_{k=1}^{W} M_{ik}N_{kj} \]

Graphically, imagine
- taking each element in a row of \(M \),
- multiplying it by the corresponding element in a column of \(N \), and
- summing up the products.

Do that for every row and every column to produce \(P \).
Computing Part of \(P \) Requires Part of \(M \) and \(N \)

Parallelize over outputs (elements of \(P \)).
To speed up computation, we need to reuse values from global memory.

Consider a 4x4 tile (block) of \(P \).

- Which part of \(M \) do we need?
 - 4 rows

- Which part of \(N \)?
 - 4 columns
Use Tiling to Boost Performance

Rows and columns are large (W).
Instead, repeat the following…
• one load per thread
• to bring tile of M into shared memory
• one load per thread
• to bring tile of N into shared memory
• synchronize,
• compute, and
• synchronize again.
Tiling with $T \times T$ Thread Blocks Gives $T \times$ Reuse

In the formula,
- **each value** of M (and N)
- is **used** W times.
- That’s the **theoretical limit on reuse**.

Tiling with $T \times T$ thread blocks
- provides **reuse of T**
- **for each value** in M (and N).
(That’s a lab in 408.)
Input Values are Reused Across…

What is the source of the reuse?
• Threads (>1 thread using a value),
• computation within one thread (same thread for several computations), or
• both?

Reuse is only across threads!
Threads Use Each Value Exactly Once

Each thread uses
• a piece of a row of M, and
• a piece of a column of N.

Inner product is computed
• in loop of T iterations
• using each value once.
Full Tile is Not Needed for Reuse of $T \times$

Consider the first iteration of the inner product loop.

Which data are used (by any thread)?

So … the reuse would be the same even if we read only those elements.
Full Tile is Not Needed for Reuse of $T \times$

The **takeaway**:
- the **number of strips loaded**, S,
- **is an independent** value,
- a **tuning parameter**!

Keep that in mind.
Thread Blocks Need Not Be Square

Another point:
• The thread block need not be square.
• Here’s $T \times U$.

Another tuning parameter.

Why not use $S=1$?
Only few threads load, and Barrier between each tile.
Cost of Loading Smaller Input Tiles

(more detail with S=1)

In each iteration of the outer loop,

- only $T+U$ (of TU total) threads load M and N elements *(divergence or load imbalance)*,
- synchronize,
- calculate S—that is, 1—*terms of the inner product*,
- and synchronize again.

```c
__syncthreads()
```

is efficient, but putting one multiply-and-add between two barriers is going to hurt.
Can Do Much Better Than 408 Code

That’s where we were in early 2008.

Then along came Volkov and Demmel*

• Treat GPU as a vector machine, and
• Apply knowledge of numerical methods.
• 50% performance boost on dense matrix multiply.
• World record at the time.
• SC19 test of time award—still used in NVIDIA’s dense linear algebra libraries today!

It’s Not Magic, It’s Application of Knowledge

• To many at the time, these results seemed like magic.
• But vector machines had been around for decades.
• The Cray supercomputers, for example.
• Volkov & Demmel reapplied knowledge to a new architecture.

What you learn in this class will also apply to future architectures.
The Secret of Success: Prepare Your Mind

“Dans les champs de l'observation le hasard ne favorise que les esprits préparés.” —Pasteur, 1854
(In the fields of observation, chance favors only prepared minds.)

• Prepare your mind:
 – study known architectures and algorithms,
 – think about important problems, and
 – make progress as you can.
The Secret of Success: Act Quickly

“Most great scientists know many important problems. … And when they see a new idea come up, … They drop all the other things and get after it.” —Hamming, 1986*

• Be at the right place at the right time.

• If your mind’s not ready, being there won’t matter.

Joint Tiling: First Pick a Dimension for Registers

How does joint tiling work?

• Let’s start here.

• We need to choose the register dimension.
• Let’s say elements of M go into registers (you can pick N if you’d like in Lab 3).
• Elements of P stay in registers, too.
Use T Threads per Thread Block

- **Elements of M** are in registers, so they cannot be shared by threads.

- Thus **need a thread for each row** of our $T \times U$ computation tile.

- Could coarsen (>1 row per thread); more N reuse but uses more registers.

- Let’s have T **threads**.
Use Thread Coarsening to Reuse M Values

M values are reused **U** times.

U > 1 requires **thread coarsening**.

- Each **thread**
 - computes **U** values of **P**, and
 - requires **U** registers to accumulate the partial sums.
Choose U=16 to Manage Register Use

GPU resources provide
- **10s of registers** per thread
- (reg. file size / max. # of threads).

U=16 is a reasonable choice.
Choose $T=64$ for Reasonable Reuse Overall

Reuse of 16 is a bit low.

We can **balance**
- by **using** a larger value of T.
- Each value of N is reused T times.

Let’s **choose $T=64$**, which gives reuse similar to 32×32 shared memory tiling (the 408 code).
Use Shared Memory Tiling to Reuse N

What about S?

- We use shared memory tiling for N, so
 - threads load values collaboratively,
 - write them into shared memory, then
 - all threads use all values.
- Total inner product terms computed per tile is UTS.
- Each of the T threads computes and accumulates US inner product terms.
- US should not be too small, since we must synchronize twice for each tile.
Choose S as $T / U = 4$

So what about S?

For $S=1$,
- only 1 in 4 threads (U/T)
- loads a value of N.

Why not have all threads load?
Thus $S = T / U = 4$.

Requires more registers for M
(load in parallel to hide latency).

© Steven S. Lumetta, ECE508/CS508/CSE508, 2020-2021
An Overview of Joint Tiling SGEMM

In each iteration,

- Thread block collaboratively loads an $S \times U$ tile of N into shared memory ($T = US$; every thread loads one N element; no divergence/idle threads).
- Each thread loads S elements from M into registers (together, these form a $T \times S$ tile of M).
- Synchronize.
- Each thread calculates S steps for $T \times U$ elements of P.
- Synchronize again.

Each thread needs U registers for P and S registers for M, so values of U and S are limited by the number of registers available.
Summary and Comments

These numbers from Volkov & Demmel for GTX280.

- T = 64: 64 threads, 64× reuse of N
- U = 16: 16 registers for P, 16× reuse of M
- S = T/U = 4
 - 4 loads per tile per thread from M
 - 1 collaborative load per tile per thread from N

- Our discussion gives you some insights as to why they work.
- For a deeper understanding, read the paper (link on class web page).

© Steven S. Lumetta, ECE508/CS508/CSE508, 2020-2021
A Comparative Analysis

Tiled SGEMM introduced in ECE408

• Each thread block computes $32 \times 32 = 1024$ results.
• Uses 12 kB on-chip memory (registers + shared memory).

Register/Shared-Memory tiled version of SGEMM

• Each thread block computes $64 \times 16 = 1024$ results.
• Uses only $5\frac{1}{4}$ kB on-chip memory.
• Similar degree of reuse; $\sim 2 \times$ more efficient than tiled MM.

<table>
<thead>
<tr>
<th>Tiling algorithm</th>
<th># of reuse per data in M</th>
<th># of reuse per data in N</th>
<th># of data computed per block in P</th>
<th>(N) Shared memory usage per block</th>
<th>(M+P) Register usage per TB</th>
<th>Performance on GTX280 in GFLOP/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jointly tiled SGEMM</td>
<td>16</td>
<td>64</td>
<td>16x64</td>
<td>4x16x4 = 256 B</td>
<td>(64x4 + 64x16) x 4 = 5 kB</td>
<td>~ 430</td>
</tr>
<tr>
<td>Shared-Memory Tiled SGEMM</td>
<td>32</td>
<td>32</td>
<td>32x32</td>
<td>32x32x4x2 = 8 kB</td>
<td>32x32x4 = 4 kB</td>
<td>< 300</td>
</tr>
</tbody>
</table>

© Wen-mei W. Hwu, David Kirk/NVIDIA, John Stratton, Izzat El Hajj, Carl Pearson, ECE508/CS508/CSE508/ECE598HK, 2010-2021
Coalescing Loads from Global Memory

One last question…

What about coalescing memory accesses?

Loading tile of N…

• thread order good already, and
• could use corner-turning.*

*Use of a transposed thread order to allow memory loads to coalesce when loading global to shared.
May Need to Transpose One Input

What about loads from M?

Loading tile of M…
• non-contiguous, so not coalesced;
• can not use corner-turning
• as each row of tile loaded by one thread.

Need to transpose!
Data Layout for FORTRAN

The C library APIs reflect the need to transpose one input matrix.

FORTRAN, in contrast, uses a column major layout:

- **M** accesses are coalesced.
- **N** needs to be transposed.
- **P** may need to be transposed.
ANY QUESTIONS?