Background: Shared Memory Tiling Not Enough

Convolutional neural network (CNN) layers
• can be transformed into dense matrix multiplications.
• Linear algebra libraries then use a range of techniques to obtain good performance,
 • of which you can get about 60%
• using the shared memory tiling taught in ECE408/CS483.
You may enjoy applying what you learn here in this context, especially if you already have code from 408.

Objective
• To learn more advanced tiling techniques
 – used in ultra-high-performance dense linear algebra libraries,
 – by placing data tiles in registers to enhance available data access bandwidth to the compute units, and
 – by understanding tradeoffs in use of on-chip memory.

Registers are Fast But Per-Thread
GPU chips have both registers and shared memory. In the last lecture, we compared their characteristics.

Registers offer
• low latency and high throughput,
• but are private to each thread, so
• must be loaded serially by each thread, and
• register tiling requires thread coarsening.
Shared Memory is Slower But More Flexible

Shared memory offers
- **comparable latency, lower throughput**
 (but still much higher than global memory)
- visible to threads in a block, so
- **can be loaded cooperatively**, and
- **does not require thread coarsening**, but
- **does need to be moved to registers** before use.

Tile Differently in Different Dimensions!

The best option?
Use both.

- Hardware **paths** are **separate**, and **throughputs** can be **combined**.
- To do so,
 - we typically **use both types of tiling**
 - for distinct dimensions of multidimensional data.

Review Dense Matrix Multiplication

Given two \(W \times W \) matrices, \(M \) and \(N \),
- we can multiply \(M \) by \(N \)
- to compute a third \(W \times W \) matrix, \(P \):

\[
P = MN
\]

In terms of the elements of \(P \),
matrix multiplication implies computing...

\[
P_{ij} = \sum_{k=1}^{W} M_{ik} N_{kj}
\]

Visualize the Computation

Graphically, imagine
- taking each element in a row of \(M \),
- **multiplying** it by the corresponding element in a column of \(N \), and
- **summing up** the products.

Do that for every row and every column to produce \(P \).
Computing Part of P Requires Part of M and N
Parallelize over outputs (elements of P).
To speed up computation, we need to reuse values from global memory.
Consider a 4x4 tile (block) of P.
• Which part of M do we need?
 4 rows
• Which part of N?
 4 columns

Use Tiling to Boost Performance
Rows and columns are large (W).
Instead, repeat the following…
• one load per thread
• to bring tile of M into shared memory
• one load per thread
• to bring tile of N into shared memory
• synchronize,
• compute, and
• synchronize again.

Tiling with $T \times T$ Thread Blocks Gives $T \times$ Reuse
In the formula,
• each value of M (and N)
 is used W times.
• That’s the theoretical limit on reuse.
Tiling with $T \times T$ thread blocks
• provides reuse of T
• for each value in M (and N).
(That’s a lab in 408.)

Input Values are Reused Across…
What is the source of the reuse?
• Threads (>1 thread using a value),
• computation within one thread (same thread for several computations), or
• both?

Reuse is only across threads!
Threads Use Each Value Exactly Once

Each thread uses
• a piece of a row of M, and
• a piece of a column of N.

Inner product is computed
• in loop of T iterations
• using each value once.

Full Tile is Not Needed for Reuse of $T \times U$

Consider the first iteration of the inner product loop.

Which data are used (by any thread)?

So … the reuse would be the same even if we read only those elements.

The takeaway:
• the number of strips loaded, S,
• is an independent value,
• a tuning parameter!

Keep that in mind.

Thread Blocks Need Not Be Square

Another point:
• The thread block need not be square.
• Here’s $T \times U$.
Another tuning parameter.

Why not use $S=1$?

Only few threads load, and Barrier between each tile.
Cost of Loading Smaller Input Tiles

(more detail with S=1)

In each iteration of the outer loop,
- only \(T+U\) (of \(TU\) total) threads load \(M\) and \(N\) elements (*divergence or load imbalance*),
- synchronize,
- calculate \(S\)—that is, \(1\)—terms of the inner product,
- and synchronize again.

```
__syncthreads() is efficient, but putting one multiply-and-add between two barriers is going to hurt.
```

Can Do Much Better Than 408 Code

That’s where we were in early 2008.

Then *along came Volkov and Demmel*:
- Treat GPU as a *vector machine*, and
- Apply knowledge of numerical methods.
- 50% *performance boost* on dense matrix multiply.
- *World record* at the time.
- *SC19 test of time award*—still used in NVIDIA’s dense linear algebra libraries today!

It’s Not Magic, It’s Application of Knowledge

- To many at the time, these results *seemed like magic*.
- But *vector machines* had been around for decades.
- The *Cray supercomputers*, for example.
- Volkov & Demmel reapplied knowledge to a new architecture.

What you learn in this class will also apply to future architectures.

The Secret of Success: Prepare Your Mind

“Dans les champs de l’observation le hasard ne favorise que les esprits préparés.” —Pasteur, 1854

(In the fields of observation, chance favors only prepared minds.)

- Prepare your mind:
 - study known architectures and algorithms,
 - think about important problems, and
 - make progress as you can.
The Secret of Success: Act Quickly

“Most great scientists know many important problems. … And when they see a new idea come up, … They drop all the other things and get after it.” —Hamming, 1986*

• Be at the right place at the right time.

• If your mind’s not ready, being there won’t matter.

Joint Tiling: First Pick a Dimension for Registers

How does joint tiling work?

• Let’s start here.

• We need to choose the register dimension.

• Let’s say elements of M go into registers (you can pick N if you’d like in Lab 3).

• Elements of P stay in registers, too.

Use T Threads per Thread Block

• Elements of M are in registers, so they cannot be shared by threads.

• Thus need a thread for each row of our T×U computation tile.

• Could coarsen (>1 row per thread); more N reuse but uses more registers.

• Let’s have T threads.

Use Thread Coarsening to Reuse M Values

M values are reused U times.

U > 1 requires thread coarsening.

• Each thread
 – computes U values of P, and
 – requires U registers to accumulate the partial sums.
Choose U=16 to Manage Register Use

GPU resources provide
- 10s of registers per thread
- (reg. file size / max. # of threads).

U=16 is a reasonable choice.

Choose T=64 for Reasonable Reuse Overall

Reuse of 16 is a bit low.

We can balance
- by using a larger value of T.
- Each value of N is reused T times.

Let’s choose T=64, which gives reuse similar to 32×32 shared memory tiling (the 408 code).

Use Shared Memory Tiling to Reuse N

What about S?
- We use shared memory tiling for N, so
 -- threads load values collaboratively,
 -- write them into shared memory, then
 -- all threads use all values.
- Total inner product terms computed per tile is UTS.
- Each of the T threads computes and accumulates US inner product terms.
- US should not be too small, since we must synchronize twice for each tile.

Choose S as T / U = 4

So what about S?
For S=1,
- only 1 in 4 threads (U/T)
- loads a value of N.

Why not have all threads load? Thus S = T / U = 4.

Requires more registers for M (load in parallel to hide latency).
An Overview of Joint Tiling SGEMM

In each iteration,

- Thread block collaboratively loads an \(S\times U\) tile of \(N\) into shared memory \(T = US\); every thread loads one \(N\) element; no divergence/idle threads).
- Each thread loads \(S\) elements from \(M\) into registers (together, these form a \(T\times S\) tile of \(M\)).
- Synchronize.
- Each thread calculates \(S\) steps for \(T\times U\) elements of \(P\).
- Synchronize again.

Each thread needs \(U\) registers for \(P\) and \(S\) registers for \(M\), so values of \(U\) and \(S\) are limited by the number of registers available.

A Comparative Analysis

Tiled SGEMM introduced in ECE408

- Each thread block computes \(32\times32 = 1024\) results.
- Uses 12 kB on-chip memory (registers + shared memory).

Register/Shared-Memory tiled version of SGEMM

- Each thread block computes \(64\times16 = 1024\) results.
- Uses only 5½ kB on-chip memory.
- Similar degree of reuse; \(\sim 2\times\) more efficient than tiled MM.

<table>
<thead>
<tr>
<th>Tiling algorithm</th>
<th># of reuse per data in M</th>
<th># of reuse per data in N</th>
<th># of data computed per block in P</th>
<th>(\text{Register usage per TB})</th>
<th>(\text{Performance (GFLOP/s)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jointly tiled SGEMM</td>
<td>16</td>
<td>64</td>
<td>16x64</td>
<td>(4\times64 = 256\times8)</td>
<td>~430</td>
</tr>
<tr>
<td>Shared-Memory tiled SGEMM</td>
<td>32</td>
<td>32</td>
<td>32x32</td>
<td>(32\times32x2 = 8\times)</td>
<td>~300</td>
</tr>
</tbody>
</table>

Coalescing Loads from Global Memory

One last question…

What about coalescing memory accesses?

Loading \(\text{tile of } N\)…

- \(\text{thread order good}\) already, and
- could use corner-turning.*

*Use of a transposed thread order to allow memory loads to coalesce when loading global to shared.

Summary and Comments

These numbers from Volkov & Demmel for GTX280.

- \(T = 64\): 64 threads, \(64\times\) reuse of \(N\)
- \(U = 16\): 16 registers for \(P\), \(16\times\) reuse of \(M\)
- \(S = T/U = 4\)
 - 4 loads per tile per thread from \(M\)
 - 1 collaborative load per tile per thread from \(N\)

- Our discussion gives you some insights as to why they work.
- For a deeper understanding, read the paper (link on class web page).
May Need to Transpose One Input

What about loads from M?

Loading tile of M…
• non-contiguous, so not coalesced;
• can not use corner-turning
• as each row of tile loaded by one thread.

Need to transpose!

Data Layout for FORTRAN

The C library APIs reflect the need to transpose one input matrix.

FORTRAN, in contrast, uses a column major layout:
• M accesses are coalesced.
• N needs to be transposed.
• P may need to be transposed.

ANY QUESTIONS?