ECE 508
Manycore Parallel Algorithms

Lecture 3: Thread Coarsening and Register Tiling
Objective

• To learn thread coarsening and register tiling,
 – two important, closely related techniques for trading reduced parallelism in return for increased memory and compute efficiency.
 – These are especially important when an application is memory-bound or compute-bound.
Merge Threads to Reduce Redundancy

- Parallel execution implies redundant work.
- **Merging** several threads allows re-use of results, reducing redundant work.
Thread Coarsening: More Registers, Less Parallelism

(Context: parallelization over outputs.)

• Instead of one, a thread calculates several outputs.
 – Save thread index calculations into registers.
 – Use the registers for each output element.
• Coarsened kernel requires more registers,
 – which may limit threads executed in parallel.
 – Increased efficiency may outweigh reduced parallelism.
 – See Kirk & Hwu, 3rd ed., Section 5.5.
Coarsening Can Limit Performance in Several Ways

What drawbacks can arise from reduction of thread count and increased register use?

• Not enough thread blocks to keep SMs busy.

• Not enough thread blocks to balance across SMs.

• Not enough thread blocks / threads to hide latency.
Provides a Tuning Method for GPU Codes

Parallelization granularity is a tuning knob.

• Many choices possible between two extremes.
 – One extreme: each thread computes one output.
 – The other: one thread computes all outputs.

• Getting \textit{tradeoff} right \textbf{not too hard for one data set on one GPU}.

• Harder to consider variable data size and changing GPU parameters over generations.
Use Two Examples to Illustrate Techniques

• To illustrate the techniques, we examine two case studies.
 – First, the DCS Gather kernel.
 – Second, a stencil computation.
Coarsening Produces Larger Computational Tiles

• Starting with Gather DCS kernel,
 – merge threads so that each thread
 – calculates several energy grid points.

Doing so increases computational tile size
(size of computation performed by a thread block),
• which implies more padding and wasted computation
 at boundaries of output array.
• May need to reduce thread count per block
 to avoid this issue.
Gather DCS on a Toy Example

Let’s consider an example:

- **one output per thread** (orig. DCS Gather kernel),
- a **10×5** potential grid map, and
- **2×4 = 8** threads per thread block.
Coarsening Increases Number of Idle Threads

- Now **coarsen to two grid points** per thread (in X dim.).
 - Note **increased thread idling** at the boundaries,
 - a classic quantization effect.
- **Mitigate by reducing** number of **threads per block**.
Reducing Blocks per Thread Avoids Increased Waste

- **Reduce thread block size** from 2×4 to 2×2.
 - Data tile size **same as** that of original kernel.
 - Avoids increasing number of idle threads.
A Simple Quiz (Just an Example!)

• Assume
 – 1000×1000 energy grid
 – 16×16 thread blocks

1. How many thread blocks are needed without thread coarsening?

2. How many thread blocks are needed if each thread computes four grid points in the x-dimension?
Quiz Answers

1. **One grid point per thread:**
 - To cover 1000 points,
 - we need \([1000/16] = 63\) blocks
 - in both X and Y dimensions.
 - We have a total of 63 * 63 blocks.

2. **Four grid points per thread:**
 - To cover 1000 points in the X dimension,
 we need \([1000/64] = 16\) blocks.
 - Number of blocks in Y dimension remains 63.
 - We have a total of 16 * 63 blocks.
Register Tiling Possible after Coarsening

Now for the benefit: register tiling.

- Recall the properties of GPU registers:
 - extremely fast (short latency), and
 - extremely high throughput: register file allows access to multiple registers per thread per cycle,
 - but private to each thread: cannot use to share computation or loaded memory data, and
 - named directly: any “arrays” must be fully expanded to constant indices (and loops unrolled).

With thread coarsening, computation from merged threads can be shared through registers!
• **Thread adds** each atom’s contribution to several lattice points.
 - Distances differ only in X component.
 - \(\text{potentialA} += \frac{\text{charge}[i]}{\text{distanceA to atom}[i]} \)
 - \(\text{potentialB} += \frac{\text{charge}[i]}{\text{distanceB to atom}[i]} \)
 - ...
A Thread’s Grid Points are NOT Adjacent!

Coarsening increases computational tile size

Threads compute multiple potentials, skipping by half-warps
Properties of the Coarsened Kernel

• Coarsened kernel processes four grid points in inner loop

• Each thread’s grid points
 – offset by at least half-warp (16) elements
 – to guarantee coalesced memory accesses.

• As before,
 – accumulates contributions into registers (now using more registers), and
 – updates global memory after inner loop.
Example of Coarsened DCS Gather Inner Loop

```c
for (int n = 0; n < atomarrdim; n += 4) {
    float atomx = atoms[n + 0]; // X coordinate
    float dy = coory - atoms[n + 1]; // Y coordinate
    float dysqpdzsqu = (dy * dy) + atoms[n + 2]; // dz^2 passed in Z
    float charge = atoms[n + 3]; // charge
}
```

Start by reading and processing atom coordinates and charge.

Fewer memory reads and computation per atom.
for (int n = 0; n < atomarrdim; n += 4) {
 float atomx = atoms[n + 0]; // X coordinate
 float dy = coory - atoms[n + 1]; // Y coordinate
 float dysqpdzsq = (dy * dy) + atoms[n + 2]; // dz^2 passed in Z
 float charge = atoms[n + 3]; // charge
 float dx1 = coorx1 – atomx;
 float dx2 = coorx2 – atomx;
 float dx3 = coorx3 - atomx;
 float dx4 = coorx4 - atomx;
}

Next, compute X components of distance.

No additional memory accesses needed!
Example of Coarsened DCS Gather Inner Loop

```c
for (int n = 0; n < atomarrdim; n += 4) {
    float atomx = atoms[n + 0];  // X coordinate
    float dy    = coory - atoms[n + 1];  // Y coordinate
    float dysqpdzsq = (dy * dy) + atoms[n + 2]; // dz^2 passed in Z
    float charge = atoms[n + 3];  // charge
    float dx1 = coorx1 – atomx;
    float dx2 = coorx2 – atomx;
    float dx3 = coorx3 - atomx;
    float dx4 = coorx4 - atomx;
    energyvalx1 += charge / sqrtf (dx1 * dx1 + dysqpdzsq);
    energyvalx2 += charge / sqrtf (dx2 * dx2 + dysqpdzsq);
    energyvalx3 += charge / sqrtf (dx3 * dx3 + dysqpdzsq);
    energyvalx4 += charge / sqrtf (dx4 * dx4 + dysqpdzsq);
}
```

Finally, accumulate contributions per grid point.

Again, no additional memory accesses needed, and minimal computation.
for (int n = 0; n < atomarrdim; n += 4) {
 float atomx = atoms[n + 0]; // X coordinate
 float dy = coory - atoms[n + 1]; // Y coordinate
 float dysqpdzsq = (dy * dy) + atoms[n + 2]; // dz^2 passed in Z
 float charge = atoms[n + 3]; // charge
 float dx1 = coorx1 - atomx;
 float dx2 = coorx2 - atomx;
 float dx3 = coorx3 - atomx;
 float dx4 = coorx4 - atomx;
 energyvalx1 += charge / sqrtf (dx1 * dx1 + dysqpdzsq);
 energyvalx2 += charge / sqrtf (dx2 * dx2 + dysqpdzsq);
 energyvalx3 += charge / sqrtf (dx3 * dx3 + dysqpdzsq);
 energyvalx4 += charge / sqrtf (dx4 * dx4 + dysqpdzsq);
}
Pros and Cons of Coarsened DCS Gather Kernel

Pros
• **Reduces number of loads** by reusing atom coordinate and charge values.
• **Eliminates redundant computation**
 – such as reuse of $dy^2 + dz^2$,
 – much like the fast CPU version.
• **Good balance** between efficiency, locality, and parallelism.

Cons
• Uses **more registers**, a limited resource.
• **Increases tile size or decreases thread count** per block.
Can the Compiler Help? Maybe.

Hand-unrolling is ugly, error-prone, and an unnecessary challenge for compilers on platforms that do not require it.

Can the CUDA compiler unroll loops and use register tiling?

- Sometimes,
 - for small “arrays” of local primitive types (int / float),
 - provided that fully unrolled loops completely eliminate indirection in register names.
- We’ll show some examples in later lectures.
Second Example: a Stencil Computation

What is a stencil computation?

- A computation based on neighbors in a structured grid.
- In computational science,
 - arises from Jacobi iterative method
 - for solving partial differential equations.
 - During each iteration,
 - each grid point is updated
 - with a weighted linear combination
 - of a subset of neighboring values and itself.
Stencils Require Little Computation per Operand

Common aspects of stencil computations:
- **abundant parallelism**: all grid points updated in parallel;
- **memory intensive**: each update requires many points; and
- **little computation**: one multiply-and-add per value.

base case: output parallelism (one thread per grid point)

The challenge? To exploit parallelism without overusing memory bandwidth.
Apply Optimizations from 408 and This Lecture

We apply several optimizations:
• improving **locality** and **data reuse**;
• 2D **tiling** in **shared memory**; and
• **coarsening** and **register tiling**.

For simplicity,
• focus on an **order 1, 7-point** stencil:
• 1 neighbor in six directions + grid point itself.

Real PDE solvers often use more neighbors; for example, order 4 (on each side), or **25-point**.
Simplify Further for Our Example (and Lab 2!)

For a **symmetric** and **homogeneous 7-point stencil**, we have

\[
\text{out}(i, j, k) = C_0 \ast \text{in}(i, j, k) + \\
C_1 \ast (\text{in}(i-1, j, k) + \text{in}(i, j-1, k) + \text{in}(i, j, k-1) + \\
\text{in}(i+1, j, k) + \text{in}(i, j+1, k) + \text{in}(i, j, k+1))
\]

Separating read (**in**) and write (**out**) arrays avoids read/write dependences.

Again for simplicity, we use

\[
C_0 = -6 \quad \text{and} \quad C_1 = 1.
\]
3D Arrays Mapped as Z-Major, Y Next

\[
\text{out}(i, j, k) = C_0 \ast \text{in}(i, j, k) + C_1 \ast (\text{in}(i-1, j, k) + \text{in}(i, j-1, k) + \text{in}(i, j, k-1) + \text{in}(i+1, j, k) + \text{in}(i, j+1, k) + \text{in}(i, j, k+1))
\]

Mapping of arrays from 3D space to linear array space.
Coarsen Each Thread to Compute a Pencil in Z

First, apply thread coarsening.

- **Coarsen** across **entire grid in Z** dimension.
- Each thread computes
 - a one-element thin **pencil**
 - **along** the **Z** dimension.
- Each thread block computes
 - a **right cuboid** (right rectilinear prism)
 - **along** the **Z** dimension.

Thread coarsening speedup: 1.21 ×
Coarsening Enables Data Reuse in Z Dimension

So far, threads access memory independently, without reuse:
• **read 7 elements** from *in*, then
• **write one value** to *out*,
• all **using global memory**.

Next, **let’s reuse inputs from** the **Z dimension** (within a thread).
Thread Coarsening Enables Reuse with Register Tiling

Reuse these data in next loop iteration.
Register Tiling Applied to a Z Pencil

Register tiling the Z dimension:

- **reuse data** along the Z dimension
- when moving **from z to z+1**.
 - current input becomes **previous**,
 - next input becomes current, and
 - new next input loaded from memory.
Simplifying Assumptions for Lab 2 and Slides

• **in** \((A0)\) and **out** \((A_{next})\) arrays
 – padded with one extra slice of 0 elements
 – on each end of X, Y, and Z dimensions.

• \(nx, ny, nz\): dimensions of the **arrays supplied** to kernel
 – include the padded elements, so
 – \(nx\) is the number of elements to be computed plus 2.

• **Slides use macro definitions** \(_{in}\) and \(_{out}\)
 (based on \(nx, ny, nz\)) **to simplify index expressions.**
Define Access Macros, Perform Thread Index Calcs

/* Nx, Ny, Nz: width of grid in X, Y, and Z directions, respectively. */
#define _in(i, j, k) in[((k)*Ny + (j))*Nx +(i)]
#define _out(i, j, k) out[((k)*Ny + (j))*Nx +(i)]
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

Write macro definitions and compute X and Y coordinates.
Initialize Registers for Tiling in Z

/* Nx, Ny, Nz: width of grid in X, Y, and Z directions, respectively. */
#define _in(i, j, k) in[((k)*Ny + (j))*Nx +(i)]
#define _out(i, j, k) out[((k)*Ny + (j))*Nx +(i)]
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
float previous = _in(i, j, 0);
float current = _in(i, j, 1);
float next = _in(i, j, 2);

Initialize registers used for tiling.
Loop Over Output Pencil in Z

/* Nx, Ny, Nz: width of grid in X, Y, and Z directions, respectively. */
#define _in(i, j, k) in[((k)*Ny + (j))*Nx +(i)]
#define _out(i, j, k) out[((k)*Ny + (j))*Nx +(i)]
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
float previous = _in(i, j, 0);
float current = _in(i, j, 1);
float next = _in(i, j, 2);
for (k = 1; k < Nz – 1; k++) {

}

Loop over output elements in Z dimension.

Note that padding is skipped.
Compute and Store One Output

/* Nx, Ny, Nz: width of grid in X, Y, and Z directions, respectively. */
#define _in(i, j, k) in[((k)*Ny + (j))*Nx +(i)]
#define _out(i, j, k) out[((k)*Ny + (j))*Nx +(i)]
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
float previous = _in(i, j, 0);
float current = _in(i, j, 1);
float next = _in(i, j, 2);
for (k = 1; k < Nz – 1; k++) {
 if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) {
 _out(i,j,k) = -6 * current + previous + next +
 _in(i-1, j, k) + _in(i+1, j, k) +
 _in(i, j-1, k) + _in(i, j+1, k);
 }
}

Boundary (padding) and excess X-Y threads are idle.

Compute and store one output.
Finally, Advance Tiled Registers

```c
/* Nx, Ny, Nz: width of grid in X, Y, and Z directions, respectively. */
#define _in(i, j, k)  in[(((k)*Ny + (j))*Nx + (i))]
#define _out(i, j, k) out[(((k)*Ny + (j))*Nx + (i))]

i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

float previous = _in(i, j, 0);
float current  = _in(i, j, 1);
float next     = _in(i, j, 2);

for (k = 1; k < Nz – 1; k++) {
    if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) {
        _out(i,j,k) = -6 * current + previous + next +
                      _in(i-1, j, k) + _in(i+1, j, k) +
                      _in(i, j-1, k) + _in(i, j+1, k);
    }
    previous = current; current = next; next = _in(i, j, k+2);
}
```

Advance tiled registers to next Z position.
Reference Version of Coarsened Stencil

/* Nx, Ny, Nz: width of grid in X, Y, and Z directions, respectively. */
#define _in(i, j, k) in[((k)*Ny + (j))*Nx +(i)]
#define _out(i, j, k) out[((k)*Ny + (j))*Nx +(i)]

i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
float previous = _in(i, j, 0);
float current = _in(i, j, 1);
float next = _in(i, j, 2);
for (k = 1; k < Nz – 1; k++) {
 if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) {
 _out(i,j,k) = -6 * current + previous + next +
 _in(i-1, j, k) + _in(i+1, j, k) +
 _in(i, j-1, k) + _in(i, j+1, k);
 }
 previous = current; current = next; next = _in(i, j, k+2);
}

© Wen-mei W. Hwu, David Kirk/NVIDIA, John Stratton, Izzat El Hajj, Carl Pearson, ECE508/CS508/CSE508/ECE598HK, 2010-2021 40
Reuse Reduces Global Memory Accesses by 25%

What does our register tiling accomplish?

• Without tiling,
 – each thread loads 7 inputs
 – for each output element written.

• With register tiling / data reuse,
 – each thread loads 5 inputs*
 – for each output element written.

Savings: 25% reduction in global memory accesses.

*Asymptotic limit for large Nz.
More Reuse Should Be Possible

Is more reuse possible?

How many outputs are affected by a single input (asymptotically, for a large grid)?

- **7**: self, 4 planar neighbors, top and bottom neighbors
- (Surface, edge, and corner points used for fewer.)
Use Shared Memory to Enable Further Reuse

Consider threads in a block computing some Z value.
• Each thread’s **current**
 – needed by (up to) **four neighbors**, but
 – **registers cannot be shared** between threads.

What can we do?
Make use of shared memory!

What else is necessary?
Synchronize between computation of Z values in the block.
Steps Required for Use of Shared Memory

Specifically, for each Z value,
• copy current into shared memory,
• synchronize (barrier synchronization),
• use neighboring values
 – from shared memory
 – to compute and write output,
• synchronize, and
• advance tiled registers.
Three Slices Maintained for Inter-Thread Reuse

• In each loop iteration,
 – threads in a block compute
 – a 2-D slice of the block’s output prism.

• We then maintain
 – three slices of input data in on-chip memories
 – previous, current, and next slices spread across the threads’ private registers, and
 – a second copy of current in shared memory.
Let’s rewrite the loop from our previous kernel.

```c
/* Nx, Ny, Nz: width of grid in X, Y, and Z directions, respectively. */
#define _in(i, j, k)  in[(((k)*Ny + (j))*Nx + (i)]
#define _out(i, j, k) out[(((k)*Ny + (j))*Nx + (i)]

i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
float previous = _in(i, j, 0);
float current  = _in(i, j, 1);
float next     = _in(i, j, 2);

for (k = 1; k < Nz – 1; k++) {
    if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) {
        _out(i,j,k) = -6 * current + previous + next +
                      _in(i-1, j, k) + _in(i+1, j, k) +
                      _in(i, j-1, k) + _in(i, j+1, k);
    }
    previous = current; current = next; next = _in(i, j, k+2);
}
```
Add a Tile of Shared Memory

// Put this line at top of kernel (not in place of loop).
__shared__ float ds_A[TILE_SIZE][TILE_SIZE];

First, we need some shared memory.
Much of the Kernel is the Same

// Put this line at top of kernel (not in place of loop).
__shared__ float ds_A[TILE_SIZE][TILE_SIZE];

for (k = 1; k < Nz – 1; k++) {

 if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) {

 // Next line is unmodified.
 previous = current; current = next; next = _in(i, j, k+2);
 }

 // Next line is unmodified.
}

© Wen-mei W. Hwu, David Kirk/NVIDIA, John Stratton, Izzat El Hajj, Carl Pearson, ECE508/CS508/CSE508/ECE598HK, 2010-2021 48
We Leave Some Parts to You

// Put this line at top of kernel (not in place of loop).
__shared__ float ds_A[TILE_SIZE][TILE_SIZE];

for (k = 1; k < Nz – 1; k++) {
 // Copy current into shared memory.
 // Barrier: wait for current to become visible.
 // Next line is unmodified.
 previous = current; current = next; next = __in(i, j, k+2);
}
Is Output Straightforward?

// Put this line at top of kernel (not in place of loop).
__shared__ float ds_A[TILE_SIZE][TILE_SIZE];

for (k = 1; k < Nz – 1; k++) {
 // Copy current into shared memory.
 // Barrier: wait for current to become visible.
 if (i > 0 && i < Nx – 1 && j > 0 && j < Ny – 1) {
 previous = current; current = next; next = _in(i, j, k+2);
 }
}

What about the output calculation?
Some Neighbors Not in Shared Memory

(0 < tx ? ds_A[ty][tx-1] : in(i-1, j, k))
Outline of Stencil Kernel with Shared Memory

// Put this line at top of kernel (not in place of loop).
__shared__ float ds_A[TILE_SIZE][TILE_SIZE];

for (k = 1; k < Nz - 1; k++) {
 // Copy current into shared memory.
 // Barrier: wait for current to become visible.
 if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) {
 _out(i,j,k) = -6 * current + previous + next +
 (0 < tx? ds_A[ty][tx-1] : _in(i-1, j, k))
 // Add conditional terms for other neighbors.
 }
 // Barrier: wait until finished using shared memory.
 // Next line is unmodified.
 previous = current; current = next; next = _in(i, j, k+2);
}
Halo data can limit reuse

Halo data can be a problem!

For each $N \times M$ tile to be computed, we load $(N + 2) \times (M + 2) - 4$ inputs.

N and M limited by registers per SM.
Analysis Illustrates Limit for Reasonable N and M

Consider **N=16** and **M=8**.

- **Without shared memory**,
 - each thread loads 5 values,
 - for a total of \(16 \times 8 \times 5 = 640\) global memory reads.
- **Shared memory reduces loads to**
 \((16 + 2) \times (8 + 2) - 4 = 176\) values.

Ratio of improvement is \(640 / 176 = 3.6\) rather than the ideal value of 5.
Other Approaches are Possible

Other approaches are possible. In early GPUs (and 408!), parallelizing global loads was better:
• each thread loads one value from global memory to shared,
• and some threads compute outputs,
• reducing non-coalesced accesses during output calculation
• and replacing control divergence with idle threads.

On recent GPUs, however, L2 cache holds most halo values!
• Pulled into cache by neighboring thread blocks.
• Conditional approach (as shown) is actually better!
Performance Data: Parallelized Loads or Conditionals?

Lumetta’s implementations
1. Parallelized loads: each block reads 32×32 X-Y slice to shared memory, computes 30×30 X-Y output slice
2. Conditions in output calc.: 32×32 blocks; each input implemented as a conditional from shared (interior) or global memory (on boundary).

Executed on 30 August 2021 using exclusive queue on a $4096 \times 4096 \times 64$ grid (Titan V GPU).

Time with parallelized loads: 20.8 msec
Time with conditions in output calc.: 19.0 msec
ANY QUESTIONS?