ECE 508
Manycore Parallel Algorithms

Lecture 3: Thread Coarsening and Register Tiling

Objective

• To learn thread coarsening and register tiling,
 – two important, closely related techniques for trading reduced parallelism in return for increased memory and compute efficiency.
 – These are especially important when an application is memory-bound or compute-bound.

Merge Threads to Reduce Redundancy

• Parallel execution implies redundant work.
• Merging several threads allows re-use of results, reducing redundant work.

Thread Coarsening: More Registers, Less Parallelism

(Context: parallelization over outputs.)

• Instead of one, a thread calculates several outputs.
 – Save thread index calculations into registers.
 – Use the registers for each output element.
• Coarsened kernel requires more registers,
 – which may limit threads executed in parallel.
 – Increased efficiency may outweigh reduced parallelism.
 – See Kirk & Hwu, 3rd ed., Section 5.5.
Coarsening Can Limit Performance in Several Ways

What drawbacks can arise from reduction of thread count and increased register use?

• Not enough thread blocks to keep SMs busy.
• Not enough thread blocks to balance across SMs.
• Not enough thread blocks / threads to hide latency.

Provides a Tuning Method for GPU Codes

Parallelization granularity is a tuning knob.
• Many choices possible between two extremes.
 – One extreme: each thread computes one output.
 – The other: one thread computes all outputs.
• Getting tradeoff right not too hard for one data set on one GPU.
• Harder to consider variable data size and changing GPU parameters over generations.

Use Two Examples to Illustrate Techniques

• To illustrate the techniques, we examine two case studies.
 – First, the DCS Gather kernel.
 – Second, a stencil computation.

Coarsening Produces Larger Computational Tiles

• Starting with Gather DCS kernel,
 – merge threads so that each thread
 calculates several energy grid points.

Doing so increases computational tile size (size of computation performed by a thread block),
• which implies more padding and wasted computation at boundaries of output array.
• May need to reduce thread count per block to avoid this issue.
Gather DCS on a Toy Example

Let’s consider an example:
• one output per thread (orig. DCS Gather kernel),
• a 10×5 potential grid map, and
• 2×4 = 8 threads per thread block.

Coarsening Increases Number of Idle Threads

• Now coarsen to two grid points per thread (in X dim.).
 – Note increased thread idling at the boundaries,
 – a classic quantization effect.
• Mitigate by reducing number of threads per block.

Reducing Blocks per Thread Avoids Increased Waste

• Reduce thread block size from 2×4 to 2×2.
 – Data tile size same as that of original kernel.
 – Avoids increasing number of idle threads.

A Simple Quiz (Just an Example!)

• Assume
 – 1000×1000 energy grid
 – 16×16 thread blocks

1. How many thread blocks are needed without thread coarsening?

2. How many thread blocks are needed if each thread computes four grid points in the x-dimension?
Quiz Answers

1. One grid point per thread:
 - To cover 1000 points,
 • we need \(\frac{1000}{16} = 63 \) blocks
 • in both X and Y dimensions.
 - We have a total of 63 * 63 blocks.

2. Four grid points per thread:
 - To cover 1000 points in the X dimension,
 we need \(\frac{1000}{64} = 16 \) blocks.
 - Number of blocks in Y dimension remains 63.
 - We have a total of 16 * 63 blocks.

Register Tiling Possible after Coarsening

Now for the benefit: register tiling.

- Recall the properties of GPU registers:
 - extremely fast (short latency), and
 - extremely high throughput: register file allows access to multiple registers per thread per cycle,
 - but private to each thread: cannot use to share computation or loaded memory data, and
 - named directly: any “arrays” must be fully expanded to constant indices (and loops unrolled).

With thread coarsening, computation from merged threads can be shared through registers!

Keep All But DX in Registers

- Thread adds each atom’s contribution to several lattice points.
 - Distances differ only in X component.
 - \(\text{potentialA} += \frac{\text{charge}[i]}{\text{distanceA to atom}[i]} \)
 - \(\text{potentialB} += \frac{\text{charge}[i]}{\text{distanceB to atom}[i]} \)
 - …

A Thread’s Grid Points are NOT Adjacent!

- Coarsening increases computational tile size
- Threads compute multiple potentials, skipping by half-warsps
Properties of the Coarsened Kernel

- Coarsened kernel processes four grid points in inner loop.
- Each thread’s grid points offset by at least half-warp (16) elements to guarantee coalesced memory accesses.
- As before, accumulates contributions into registers (now using more registers), and updates global memory after inner loop.

Example of Coarsened DCS Gather Inner Loop

```c
for (int n = 0; n < atomarrdim; n += 4) {
    float atomx = atoms[n + 0];             // X coordinate
    float (int n = 0; n < atomarrdim; n += 4) { float atomx = atoms[n + 0];          // X coordinate
    float dy = coory - atoms[n + 1];        // Y coordinate
    float dy = (dy * dy) + atoms[n + 2];    // dz^2 passed in Z
    float charge = atoms[n + 3];           // charge
    float dx1 = coorx1 - atomx;
    float dx2 = coorx2 - atomx;
    float dx3 = coorx3 - atomx;
    float dx4 = coorx4 - atomx;
    energyvalx1 += charge / sqrtf (dx1 * dx1 + dysqpdzsq);
    energyvalx2 += charge / sqrtf (dx2 * dx2 + dysqpdzsq);
    energyvalx3 += charge / sqrtf (dx3 * dx3 + dysqpdzsq);
    energyvalx4 += charge / sqrtf (dx4 * dx4 + dysqpdzsq);
}
```

Example of Coarsened DCS Gather Inner Loop

```c
for (int n = 0; n < atomarrdim; n += 4) {
    float atomx = atoms[n + 0];             // X coordinate
    float dy = coory - atoms[n + 1];        // Y coordinate
    float dy = (dy * dy) + atoms[n + 2];    // dz^2 passed in Z
    float charge = atoms[n + 3];           // charge
    float dx1 = coorx1 - atomx;
    float dx2 = coorx2 - atomx;
    float dx3 = coorx3 - atomx;
    float dx4 = coorx4 - atomx;
    energyvalx1 += charge / sqrtf (dx1 * dx1 + dysqpdzsq);
    energyvalx2 += charge / sqrtf (dx2 * dx2 + dysqpdzsq);
    energyvalx3 += charge / sqrtf (dx3 * dx3 + dysqpdzsq);
    energyvalx4 += charge / sqrtf (dx4 * dx4 + dysqpdzsq);
}
```

Example of Coarsened DCS Gather Inner Loop

```c
for (int n = 0; n < atomarrdim; n += 4) {
    float atomx = atoms[n + 0];             // X coordinate
    float dy = coory - atoms[n + 1];        // Y coordinate
    float dy = (dy * dy) + atoms[n + 2];    // dz^2 passed in Z
    float charge = atoms[n + 3];           // charge
    float dx1 = coorx1 - atomx;
    float dx2 = coorx2 - atomx;
    float dx3 = coorx3 - atomx;
    float dx4 = coorx4 - atomx;
    energyvalx1 += charge / sqrtf (dx1 * dx1 + dysqpdzsq);
    energyvalx2 += charge / sqrtf (dx2 * dx2 + dysqpdzsq);
    energyvalx3 += charge / sqrtf (dx3 * dx3 + dysqpdzsq);
    energyvalx4 += charge / sqrtf (dx4 * dx4 + dysqpdzsq);
}
```
Reference Version: Coarsened DCS Gather Inner Loop

```c
for (int n = 0; n < atomarrdim; n += 4) {
    float atomx = atoms[n + 0]; // X coordinate
    float dy = coory - atoms[n + 1]; // Y coordinate
    float dysqpdzsq = (dy * dy) + atoms[n + 2]; // dz^2 passed in Z
    float charge = atoms[n + 3]; // charge
    float dx1 = coorx1 - atomx;
    float dx2 = coorx2 - atomx;
    float dx3 = coorx3 - atomx;
    float dx4 = coorx4 - atomx;
    energyvalx1 += charge / sqrtf (dx1 * dx1 + dysqpdzsq);
    energyvalx2 += charge / sqrtf (dx2 * dx2 + dysqpdzsq);
    energyvalx3 += charge / sqrtf (dx3 * dx3 + dysqpdzsq);
    energyvalx4 += charge / sqrtf (dx4 * dx4 + dysqpdzsq);
}
```

Pros and Cons of Coarsened DCS Gather Kernel

Pros
- **Reduces number of loads** by reusing atom coordinate and charge values.
- **Eliminates redundant computation**
 - such as reuse of dy^2 + dz^2,
 - much like the fast CPU version.
- **Good balance** between efficiency, locality, and parallelism.

Cons
- Uses **more registers**, a limited resource.
- Increases tile size or decreases thread count per block.

Can the Compiler Help? Maybe.

Hand-unrolling is ugly, error-prone, and an unnecessary challenge for compilers on platforms that do not require it.

Can the CUDA compiler unroll loops and use register tiling?
- **Sometimes,**
 - for small “arrays” of local **primitive types** (int / float),
 - **provided** that fully unrolled loops **completely eliminate indirection in register names**.
- We’ll show some examples in later lectures.

Second Example: a Stencil Computation

What is a stencil computation?
- A computation based on neighbors in a structured grid.
- In computational science,
 - arises from Jacobi iterative method
 - for solving partial differential equations.
 - During each iteration,
 - each grid point is updated
 - with a weighted linear combination
 - of a subset of neighboring values and itself.

```latex
d_{i,j,k}^{n+1} = \frac{1}{4} \left( d_{i+1,j,k}^n + d_{i-1,j,k}^n + d_{i,j+1,k}^n + d_{i,j-1,k}^n \right)
```
Stencils Require Little Computation per Operand

Common aspects of stencil computations:
• abundant parallelism: all grid points updated in parallel;
• memory intensive: each update requires many points; and
• little computation: one multiply-and-add per value.

base case: output parallelism (one thread per grid point)

The challenge? To exploit parallelism without overusing memory bandwidth.

Apply Optimizations from 408 and This Lecture

We apply several optimizations:
• improving locality and data reuse;
• 2D tiling in shared memory; and
• coarsening and register tiling.

For simplicity,
• focus on an order 1, 7-point stencil:
• 1 neighbor in six directions + grid point itself.

Real PDE solvers often use more neighbors; for example, order 4 (on each side), or 25-point.

Simplify Further for Our Example (and Lab 2!)

For a symmetric and homogeneous 7-point stencil, we have

\[\text{out}(i, j, k) = C_0 \times \text{in}(i, j, k) + C_1 \times (\text{in}(i-1, j, k) + \text{in}(i, j-1, k) + \text{in}(i, j, k-1) + \text{in}(i+1, j, k) + \text{in}(i, j+1, k) + \text{in}(i, j, k+1)) \]

Separating read (in) and write (out) arrays avoids read/write dependences.

Again for simplicity, we use
\[C_0 = -6 \] and \[C_1 = 1 \].

3D Arrays Mapped as Z-Major, Y Next

\[\text{out}(i, j, k) = C_0 \times \text{in}(i, j, k) + C_1 \times (\text{in}(i-1, j, k) + \text{in}(i, j-1, k) + \text{in}(i, j, k-1) + \text{in}(i+1, j, k) + \text{in}(i, j+1, k) + \text{in}(i, j, k+1)) \]

Mapping of arrays from 3D space to linear array space.
Coarsen Each Thread to Compute a Pencil in Z

First, apply thread coarsening.
- **Coarsen** across entire grid in Z dimension.
- Each thread computes
 - a one-element thin pencil
 - along the Z dimension.
- Each thread block computes
 - a right cuboid (right rectilinear prism)
 - along the Z dimension.

Thread coarsening speedup: $1.21 \times$

Coarsening Enables Data Reuse in Z Dimension

So far, threads access memory independently, without reuse:
- read 7 elements from in, then
- write one value to out,
- all using global memory.

Next, let’s reuse inputs from the Z dimension (within a thread).

Thread Coarsening Enables Reuse with Register Tiling

Register tiling the Z dimension:
- reuse data along the Z dimension
- when moving from z to $z+1$.
 - current input becomes previous,
 - next input becomes current, and
 - new next input loaded from memory.

Register Tiling Applied to a Z Pencil
Simplifying Assumptions for Lab 2 and Slides

- **in** (**A0**) and **out** (**Anext**) arrays
 - padded with one extra slice of 0 elements
 - on each end of X, Y, and Z dimensions.
- **nx, ny, nz**: dimensions of the arrays supplied to kernel
 - include the padded elements, so
 - **nx** is the number of elements to be computed plus 2.
- Slides use macro definitions **_in** and **_out**
 (based on **nx, ny, nz**) to simplify index expressions.

Define Access Macros, Perform Thread Index Calcs

```c
/* Nx, Ny, Nz: width of grid in X, Y, and Z directions, respectively. */
#define _in(i, j, k)  in[(((k)*Ny + (j))*Nx +(i))]
#define _out(i, j, k) out[(((k)*Ny + (j))*Nx +(i))]

i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
float previous = _in(i, j, 0);
float current  = _in(i, j, 1);
float next     = _in(i, j, 2);
```

Initialize Registers for Tiling in Z

```c
/* Nx, Ny, Nz: width of grid in X, Y, and Z directions, respectively. */
#define _in(i, j, k)  in[(((k)*Ny + (j))*Nx +(i))]
#define _out(i, j, k) out[(((k)*Ny + (j))*Nx +(i))]
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
floate previous = _in(i, j, 0);
floate current  = _in(i, j, 1);
floate next     = _in(i, j, 2);
```

Loop Over Output Pencil in Z

```c
/* Nx, Ny, Nz: width of grid in X, Y, and Z directions, respectively. */
#define _in(i, j, k)  in[(((k)*Ny + (j))*Nx +(i))]
#define _out(i, j, k) out[(((k)*Ny + (j))*Nx +(i))]
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
floate previous = _in(i, j, 0);
floate current  = _in(i, j, 1);
floate next     = _in(i, j, 2);
for (k = 1; k < Nz – 1; k++) {
  }
```
Compute and Store One Output

/* Nx, Ny, Nz: width of grid in X, Y, and Z directions, respectively. */
#define _in(i, j, k) in[((k)*Ny + (j))*Nx +(i)]
#define _out(i, j, k) out[((k)*Ny + (j))*Nx +(i)]
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
float previous = _in(i, j, 0);
float current = _in(i, j, 1);
float next = _in(i, j, 2);
for (k = 1; k < Nz – 1; k++) {
 if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) {
 _out(i,j,k) = -6 * current + previous + next +
 _in(i-1, j, k) + _in(i+1, j, k) +
 _in(i, j-1, k) + _in(i, j+1, k);
 }
 previous = current; current = next; next = _in(i, j, k+2);
}

Finally, Advance Tiled Registers

/* Nx, Ny, Nz: width of grid in X, Y, and Z directions, respectively. */
#define _in(i, j, k) in[((k)*Ny + (j))*Nx +(i)]
#define _out(i, j, k) out[((k)*Ny + (j))*Nx +(i)]
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
float previous = _in(i, j, 0);
float current = _in(i, j, 1);
float next = _in(i, j, 2);
for (k = 1; k < Nz – 1; k++) {
 if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) {
 _out(i,j,k) = -6 * current + previous + next +
 _in(i-1, j, k) + _in(i+1, j, k) +
 _in(i, j-1, k) + _in(i, j+1, k);
 }
 previous = current; current = next; next = _in(i, j, k+2);
}

Reference Version of Coarsened Stencil

/* Nx, Ny, Nz: width of grid in X, Y, and Z directions, respectively. */
#define _in(i, j, k) in[((k)*Ny + (j))*Nx +(i)]
#define _out(i, j, k) out[((k)*Ny + (j))*Nx +(i)]
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
float previous = _in(i, j, 0);
float current = _in(i, j, 1);
float next = _in(i, j, 2);
for (k = 1; k < Nz – 1; k++) {
 if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) {
 _out(i,j,k) = -6 * current + previous + next +
 _in(i-1, j, k) + _in(i+1, j, k) +
 _in(i, j-1, k) + _in(i, j+1, k);
 }
 previous = current; current = next; next = _in(i, j, k+2);
}

Reuse Reduces Global Memory Accesses by 25%

What does our register tiling accomplish?

• Without tiling,
 – each thread loads 7 inputs
 – for each output element written.
• With register tiling / data reuse,
 – each thread loads 5 inputs*
 – for each output element written.
Savings: 25% reduction in global memory accesses.
*Asymptotic limit for large Nz.

Boundary (padding) and excess X-Y threads are idle.
More Reuse Should Be Possible

Is more reuse possible?

How many outputs are affected by a single input (asymptotically, for a large grid)?

- **7**: self, 4 planar neighbors, top and bottom neighbors
- (Surface, edge, and corner points used for fewer.)

Use Shared Memory to Enable Further Reuse

Consider threads in a block computing some Z value.

- Each thread’s **current**
 - needed by (up to) four neighbors, but
 - registers cannot be shared between threads.

 What can we do?
 Make use of shared memory!

 What else is necessary?
 Synchronize between computation of Z values in the block.

Steps Required for Use of Shared Memory

Specifically, **for each Z value**,

- **copy current into shared memory,**
- **synchronize** (barrier synchronization),
- use neighboring values
 - from shared memory
 - to **compute and write output,**
- **synchronize,** and
- **advance tiled registers.**

Three Slices Maintained for Inter-Thread Reuse

- In each loop iteration,
 - threads in a block compute
 - a 2-D slice of the block’s output prism.

- We then **maintain**
 - **three slices of input** data in **on-chip** memories
 - **previous, current, and next** slices
 spread across the threads’ private **registers**, and
 - a second **copy of current in shared memory.**
Let's rewrite the loop from our previous kernel.

```
#define _in(i, j, k) in[((k)*Ny + (j))*Nx +(i)]
#define _out(i, j, k) out[((k)*Ny + (j))*Nx +(i)]

i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;
float previous = _in(i, j, 0);
float current = _in(i, j, 1);
float next = _in(i, j, 2);
for (k = 1; k < Nz – 1; k++) {
  if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) {
    _out(i,j,k) = -6 * current + previous + next +
    _in(i-1, j, k) + _in(i+1, j, k) +
    _in(i, j-1, k) + _in(i, j+1, k);
  }
  previous = current; current = next; next = _in(i, j, k+2);
}
```

Add a Tile of Shared Memory

```
__shared__ float ds_A[TILE_SIZE][TILE_SIZE];
```

First, we need some shared memory.

We Leave Some Parts to You

```
__shared__ float ds_A[TILE_SIZE][TILE_SIZE];
```

// Put this line at top of kernel (not in place of loop).
// Copy current into shared memory.
// Barrier: wait for current to become visible.
if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) {
 Barrier: wait until finished using shared memory.
 previous = current; current = next; next = _in(i, j, k+2);
}
```

You should know how to do these things...
Is Output Straightforward?

```
// Put this line at top of kernel (not in place of loop).
__shared__ float ds_A[TILE_SIZE][TILE_SIZE];
for (k = 1; k < Nz - 1; k++) {
 // Copy current into shared memory.
 // Barrier: wait for current to become visible.
 if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) {
 _out(i, j, k) = -6 * current + previous + next +
 (0 < tx? ds_A[ty][tx-1] : _in(i-1, j, k))
 }
 // Barrier: wait until finished using shared memory.
 // Next line is unmodified.
 previous = current; current = next; next = _in(i, j, k+2);
}
```

What about the output calculation?

Outline of Stencil Kernel with Shared Memory

```
// Put this line at top of kernel (not in place of loop).
__shared__ float ds_A[TILE_SIZE][TILE_SIZE];
for (k = 1; k < Nz - 1; k++) {
 // Copy current into shared memory.
 // Barrier: wait for current to become visible.
 if (i > 0 && i < Nx - 1 && j > 0 && j < Ny - 1) {
 _out(i, j, k) = -6 * current + previous + next +
 (0 < tx? ds_A[ty][tx-1] : _in(i-1, j, k))
 }
 // Barrier: wait until finished using shared memory.
 // Next line is unmodified.
 previous = current; current = next; next = _in(i, j, k+2);
}
```

Some Neighbors Not in Shared Memory

Halo Data Can Limit Reuse

Halo data can be a problem!

For each $N \times M$ tile to be computed, we load
$(N + 2) \times (M + 2) - 4$ inputs.

N and M limited by registers per SM.
Analysis Illustrates Limit for Reasonable N and M

Consider N=16 and M=8.

- **Without shared memory**, each thread loads 5 values, for a total of \(16 \times 8 \times 5 = 640\) global memory reads.
- **Shared memory reduces loads to** \((16 + 2) \times (8 + 2) - 4 = 176\) values.

Ratio of improvement is \(640 / 176 = 3.6\) rather than the ideal value of 5.

Other Approaches are Possible

Other approaches are possible. **In early GPUs** (and 408!), **parallelizing global loads was better**: each thread loads one value from global memory to shared, and some threads compute outputs, reducing non-coalesced accesses during output calculation and replacing control divergence with idle threads.

**On recent GPUs**, however, **L2 cache holds most halo values!**
- Pulled into cache by neighboring thread blocks.
- Conditional **approach (as shown) is actually better!**

Performance Data: Parallelized Loads or Conditionals?

Lumetta’s implementations

1. Parallelized loads: each block reads \(32 \times 32\) X-Y slice to shared memory, computes \(30 \times 30\) X-Y output slice
2. Conditions in output calc.: \(32 \times 32\) blocks; each input implemented as a conditional from shared (interior) or global memory (on boundary).

Executed on **30 August 2021** using exclusive queue on a \(4096 \times 4096 \times 64\) grid (**Titan V GPU**).

- **Time with parallelized loads:** 20.8 msec
- **Time with conditions in output calc.:** 19.0 msec

 ANY QUESTIONS?