ECE 508
Manycore Parallel Algorithms

Lecture 11: Parallel Ordered Merge

Background
• We started with easy parallelism,
 – used atomics to coordinate and
 – optimized the access patterns.
• Next, we looked at reorganizing data.
• With graphs, we looked at
 – finding the parallelism from step to step and
 – Using hierarchical kernels and dynamic
 parallelism to leverage the parallelism.
• But some algorithms may seem inherently sequential.

Objective
• to learn techniques for high-performance parallel
 merge sort
 – input identification
 – tiling for coalescing
 – circular buffering for data reuse
• to learn to hide complexities from library users

Sorting is an Important Problem
• Sorting is a fundamental operation in computing.
• Covered early, with many algorithms.
• Sort has long been a challenge for parallel systems.
• In my first parallel programming class,
 – we had a sorting competition.
 – Each person got a random algorithm
 and a random machine.
 – I got bitonic sort ($O(N^2)$) on a Cray,
 – so I had to argue that my constant was smallest!
Architecture Matters to the Algorithm

A few weeks ago, I mentioned NOWSort.

- On a cluster of N workstations, one…
 - oversamples to pick N splitters,
 - broadcasts the splitters,
 - bins data on each machine (based on the splitters),
 - sends the bins (all-to-all communication), and
 - performs the final sort locally.

- But those are CPUs—we **need a good GPU sort** for the last step.

We Focus on Parallel Merge Sort

- Let’s look at **merge sort**: sort chunks in parallel, then merge the chunks.

- Merge sort is also a building block for other sorting algorithms.

- We need to be careful about complexity; avoid adding too much extra work.

Merge by Repeatedly Choosing the Smaller

Choose smaller element from unused part of A and B.

If equal, choose from A to support stable sorts (in which elements of equal value remain in the same order).

Implementation of Sequential Merge

```c
void merge_sequential (int* A, int m, int* B, int n, int *C) {
    int i = 0; //index into A
    int j = 0; //index into B
    int k = 0; //index into C
    while (i < m && j < n) {
        if (A[i] < B[j]) { // if A is less
            C[k++] = A[i++];
        } else { // if B is less
            C[k++] = B[j++];
        }
    }
    while (i < m) { // copy rest of A
        C[k++] = A[i++];
    }
    while (j < n) { // copy rest of B
        C[k++] = B[j++];
    }
}
```
Copy Until One List is Empty

```c
void merge_sequential (int* A, int m, int* B, int n, int *C) {
    int i = 0; //index into A
    int j = 0; //index into B
    int k = 0; //index into C
    while (i < m && j < n) {
        if (A[i] <= B[j]) {
            C[k++] = A[i++];
        } else {
            C[k++] = B[j++];
        }
    }
    ...  // Copy remainder of one list here.
}
```

Then Copy Array Remainder to Result

```c
if (i == m) {
    while (j < n) {
        C[k++] = B[j++];
    }
} else {
    while (j < n) {
        C[k++] = A[i++];
    }
}
```

Can We Find Parallelism?

So … what can we parallelize?

- Each position depends on all previous choices.
- But not really on the details of those choices.
- We’ve seen this problem before, actually.

```
A 1 7 8 9 10
B 7 10 10 12
C 1 7 7 10 10 10 12
```

Pick a Splitter and Use it to Split!

Remember dynamic parallelism with neighbor lists?

```
Pick the middle element of A. Say it has value X.
```

```
Binary (N-ary) search for the first element Y of B such that Y >= X.
```

© Steven S. Lumetta, ECE508/CS508/CSE508/CSE598/EE508, 2021
Sections Can be Merged in Parallel

Can *merge yellow and blue* regions *in parallel*!

- Array A may contain more X values—that's ok.
- All values in this section are < X.

Parallelize Splitting

Divide and conquer?

- No.
- **Parallelize!**

Only total size (in both arrays) matters for load balance; can do hierarchically and use dynamic parallelism.

A “Scatter” Approach?

- In 2019, Wen-mei claimed that
 - no one had implemented a scatter approach:
 - each thread takes a section of input A and B values and delivers them to the final location.
- The approach just outlined (split, scan, merge sections) occurred to me immediately (on the objective slide).

Let’s Flip Around the Splitter Idea

- Maybe no one has gotten it to go fast?
- Try it if you’d like—maybe it’s a paper.
- Hard to believe no one has tried that approach, though.
- Especially given that we’re now going to use the same idea in reverse…
Name the Number of Elements per Array

- **Pick** some number i of elements from start of A.
- These elements **join with** some number j of elements from start of B (find j as described, if desired).
- Together, they become first $k = i + j$ elements of C.

Co-Rank of an Output Prefix String

In this context, the **tuple** (i,j) is the co-rank of A and B for the prefix of k elements of C.

Given A, B, and a value k, can we compute (i,j)?

- **Of course!**
 - First, we know that $j = k - i$, so **computing i suffices**.
 - Also, the **value of i is unique** (given A, B, and k).
 - Let’s look at the arrays again…

First Constraint Generalizes Splitter Search

First, we know that
- the element at the end of the yellow region in A—X
- must be sorted before the element just after the yellow region in B—Y.
- So $X \leq Y$. That was our splitter search condition.
- Let’s generalize to $(j = n) \text{ OR } (A[i - 1] \leq B[j])$.

Second Constraint Arises from Swapping Arrays

Now do the **same with the arrays reversed**:
- the element at the end of the yellow region in B
- must be sorted before the element just after the yellow region in A.
- That gives $(i = m) \text{ OR } (A[i] > B[j - 1])$.
- (We know $A[i] \geq X > B[j - 1]$ in the splitter case.)
Find Initial Lower Bound for Binary Search
But now we can **find i using binary (N-ary) search**!

What is the minimum value of i? 0?
What if \(k > n\) (\(n\) is the length of \(B\))?
Even if all elements of \(B\) are first in \(C\), \(C\) must include some of \(A\).

So the **smallest** possible i is \(\max(0, k - n)\).

Find Initial Upper Bound for Binary Search
And the largest i? \(m\)?
What if \(k < m\)?
i cannot be greater than \(k\), either.
So the **largest** possible i is \(\min(k, m)\).

Now we can simply search…

Computing the Co-Rank

```c
int co_rank (int k, int* A, int m, int* B, int n) {
    int low = (k > n ? k – n : 0);
    int high = (k < m ? k : m);
    while (low < high) {
        …
    }
    return low;
}
```

Binary Search Division for Co-Rank

```c
int i = low + (high – low) / 2;
int j = k – i;
if (j < n && A[i - 1] > B[j]) {
    high = i - 1;
} else if (i < m && A[i] <= B[j – 1]) {
    low = i + 1;
} else {
    return i;
}
```

© Steven S. Lumetta, ECE508/CS508/CSE508, 2021
Co-Rank Reference Version

```c
int co_rank (int k, int* A, int m, int* B, int n) {
    int low = (k > n ? k - n : 0);
    int high = (k < m ? k : m);
    while (low < high) {
        int i = low + (high - low) / 2;
        int j = k - i;
        if (j < n && A[i - 1] > B[j]) {
            high = i - 1;
        } else if (i < m && A[i] <= B[j - 1]) {
            low = i + 1;
        } else {
            return i;
        }
    }
    return low;
}
```

This code has not been tested yet...

Wen-mei’s Version (part 1 of 2)

```c
int co_rank (int k, int* A, int m, int* B, int n) {
    int i = k < m ? k : m;  // i = min(k,m)
    int j = k - i;
    int i_low = 0 > (k-n) ? 0 : k-n;  // i_low = max(0, k-n)
    int j_low = 0 > (k-m) ? 0: k-m; // j_low = max(0,k-m)
    int delta;
    bool active = true;
    while (active) {
        if (i > 0 && j < n && A[i-1] > B[j]) {
            delta = ((i - i_low +1) >> 1); // ceil(i-i_low)/2)
        } else if (j > 0 && i < m && B[j-1] >= A[i]) {
            delta = ((j - j_low +1) >> 1);  // ceil(i-i_low)/2)
        } else {  // (i = i_low +1) >> 1)
            i_low = j;
            j = j + delta;
            active = false;
        }
    }
    return i;
}
```

Gather Approach Assigns Segment of C per Thread

```
A
thread 0
1 | 7 | 8 | 9 | 10

B
thread 1
7 | 10 | 10 | 12

C
thread 2
1 | 7 | 7 | 9 | 10 | 10 | 12
```

© Steven S. Lumetta, ECE508/CS508/CSE508, 2021
© Wen-mei W. Hwu, David Kirk/NVIDIA, John Stratton, Izzat El Hajj, Carl Pearson, ECE508/CS508/CSE508/ECE598HK, 2010-2021

So … now what?
Gather!
Assign a segment of C to each thread.
Three threads, for example…

© Wen-mei W. Hwu, David Kirk/NVIDIA, John Stratton, Izzat El Hajj, Carl Pearson, ECE508/CS508/CSE508/ECE598HK, 2010-2021
Each thread uses co-rank twice
- to obtain starting points \((i_{\text{start}}, j_{\text{start}})\)
- to obtain ending points \((i_{\text{end}}, j_{\text{end}})\).

Then performs a sequential merge.

Some Load Imbalance
- Work necessary for co-rank calls is imbalanced.
- Higher-indexed threads have a bigger search space.
- But use of binary search in co-rank reduces imbalance.

Structure of Basic Merge Kernel
Basic merge kernel is then pretty simple:
- Assign \(\lceil \text{size of } C / \# \text{ of threads} \rceil\) elements per thread
- Find thread’s bounds in \(C\).
- Use \texttt{co_rank} to find input bounds.
- Use \texttt{sequential_merge} to produce thread’s output.
Find Thread Index and Elements per Thread

`__global__ void merge_basic_kernel (int* A, int m, int* B, int n, int* C) {
 int tid = blockIdx.x * blockDim.x + threadIdx.x;
 int elt = ceil ((m+n)*1.0f/(blockDim.x*gridDim.x));
 int lin_idx = tid * elt;
}

Find Start and End Indices in Output Array C

`__global__ void merge_basic_kernel (int* A, int m, int* B, int n, int* C) {
 int tid = blockIdx.x * blockDim.x + threadIdx.x;
 int elt = ceil ((m+n)*1.0f/(blockDim.x*gridDim.x));
 int k_curr = tid * elt;
 if (m + n < k_curr) { k_curr = m + n; }
 int k_next = k_curr + elt;
 if (m + n < k_next) { k_next = m + n; }
}

Co-Rank, then Merge

``
int i_curr = co_rank (k_curr, A, m, B, n);
int i_next = co_rank (k_next, A, m, B, n);
int j_curr = k_curr - i_curr;
int j_next = k_next - i_next;
merge_sequential (&A[i_curr], i_next - i_curr,
 &B[j_next], j_next - j_curr,
 &C[k_curr]);
``

Basic Merge Kernel Performs Poorly

- Global memory accesses not coalesced:
 - binary search (`co_rank`) on A/B, and
 - sequential merge reads and writes.

- Also lots of localized control divergence:
 - `co_rank` search direction and depth, and
 - sequential merge A/B select, final list copy.
Solution: Aggregate, Collaborate, Tile

Consider A and B segments for threads in a block.

- Only need aggregate bounds to allow collaborative load/store to/from shared memory.
- Choose one thread per block to find bounds, so reduce pressure on global memory.
- Can tile segment loads to fit shared memory.
- Can determine per-thread bounds using \texttt{co_rank} on shared memory data.

Representative Thread(s) Find(s) Bounds

Thread block 0’s outputs

Share A and B bounds with all threads.

Operate on Tiles in Shared Memory

Read tiles collaboratively into shared memory.

A

B

tile_A

tile_B

tile_C

All threads \texttt{co_rank} and merge into shared tile.

How Much Can We Merge?

A question for you:

What is the relationship between the sizes of tiles for A, B, and C?

Hint: how much data can we safely write into C?

Say we use all data from tile A. What comes next:

- something from tile B?
- Or something not yet in shared memory (from A)?

So size of tile C \leq \min (size of tile A, size of tile B).

We’ll set all three to be equal size.
Write Back to C Collaboratively

We use half of the data from tiles A and B. Tile C is then written back to C collaboratively.

Discard Remaining Data and Load Next Tile

Then what?
Start over! Flush and load next tile.
(2× bandwidth loss—we’ll come back later)

Handle End of Data Correctly

Oops! B has too little data left to fill a tile! That’s ok: we know B is out of data, not just tile B—just need to use that difference in the code!

Performance Hints for Lab 8

Some performance guidelines…
• Thread block output sections should have at least a few thousand elements.
• Tiles should have at least a few hundred elements.
• Each thread should be responsible for tens of outputs per tile.

Now, let’s look at some code!
new parameter: tile size

Tiles Split Shared Memory

__global__ void merge_tiled_kernel
(int* A, int m, int* B, int n,
 int* C, int tile_size)
{
 extern __shared__ int shareAB[];

 int* tileA = &shareAB[0];
 int* tileB = &shareAB[tile_size];

 tileA occupies the first half of shared memory.
 tileB occupies the second half.

 Your version needs another block for tileC.

All Threads Find Output Bounds

int elt = ceil ((m + n) * 1.0f / gridDim.x);
int blk_C_curr = blockIdx.x * elt;
block's ending output bound
(assumes 1+ elts/block)

int blk_C_next = blk_C_curr + elt;
if (m + n < blk_C_next) { blk_C_next = m + n; }

Representative Thread(s) Find Input Bounds

if (threadIdx.x == 0) {
 tileA[0] = co_rank (blk_C_curr, A, m, B, n);
 tileA[1] = co_rank (blk_C_next, A, m, B, n);
}
__syncthreads();

Be sure that other threads see the values.
Pass to other threads.
Compute input bounds (representative threads only).
All Threads Compute Bounds for B

```c
if (threadIdx.x == 0) {
    tileA[0] = co_rank (blk_C_curr, A, m, B, n);
    tileA[1] = co_rank (blk_C_next, A, m, B, n);
}
__syncthreads();
```

All threads read and compute input bounds.

```c
int blk_A_curr = tileA[0];
int blk_A_next = tileA[1];
int blk_B_curr = blk_C_curr - blk_A_curr;
int blk_B_next = blk_C_next - blk_A_next;
__syncthreads();
```

Finish reads before loading first tile.

Representative Thread(s) Find(s) Bounds

Share A and B bounds with all threads.

Compute Lengths and Number of Tiles

```c
int C_length = blk_C_next - blk_C_curr;
int A_length = blk_A_next - blk_A_curr;
int B_length = blk_B_next - blk_B_curr;

int num_tiles =
    ceil (C_length * 1.0f / tile_size);
```

Compute block's segment lengths.

```c
int C_produced = 0;
int A_consumed = 0;
int B_consumed = 0;
```

data consumed / produced already

Tile Loop Contains Three Steps

```c
for (int counter = 0; num_tiles > counter; counter++) {
    // load tile
    // process tile
    // advance variables for next tile
}
```
Use a Loop to Load Tiles to Shared Memory

```
for (int i = 0; i < tile_size; i += blockDim.x) {
    if (i + threadIdx.x < A_length - A_consumed) {
        tileA[i + threadIdx.x] = A[blk_A_curr + A_consumed + i + threadIdx.x];
    }
}
```

Read remaining data (up to a tile) for block into tileA.

Do the same for tileB.

```
for (int i = 0; i < tile_size; i += blockDim.x) {
    if (i + threadIdx.x < A_length - A_consumed) {
        tileA[i + threadIdx.x] = A[blk_A_curr + A_consumed + i + threadIdx.x];
    }
    if (i + threadIdx.x < B_length - B_consumed) {
        tileB[i + threadIdx.x] = B[blk_B_curr + B_consumed + i + threadIdx.x];
    }
}
__syncthreads();
```

Wait for tile loads to complete.

Write Back to C Collaboratively

We have a tile—time to do some work! We’ll just merge directly into C in this code.

Tile C is then written back to C collaboratively.

```
int per_thread = tile_size / blockDim.x;
int thr_C_curr = threadIdx.x * per_thread;
int thr_C_next = thr_C_curr + per_thread;
```

Find Per-Thread Output Bounds

This ratio should be integral.

Compute per-thread output bounds.
Limit to remaining output needed.

Do Not Produce More Output than Needed

```c
int per_thread = tile_size / blockDim.x;
int thr_C_curr = threadIdx.x * per_thread;
int thr_C_next = thr_C_curr + per_thread;
int C_remaining = C_length - C_produced;
if (C_remaining < thr_C_curr) {
    thr_C_curr = C_remaining;
}
if (C_remaining < thr_C_next) {
    thr_C_next = C_remaining;
}
```

Compute amount in tiles.

Compute Data Actually in Tiles A and B

```c
int A_in_tile = A_length - A_consumed;
if (tile_size < A_in_tile) { A_in_tile = tile_size; }
int B_in_tile = B_length - B_consumed;
if (tile_size < B_in_tile) { B_in_tile = tile_size; }
```

Find Per-Thread Input Bounds for A

```c
int thr_A_curr = co_rank
                (thr_C_curr, tileA, A_in_tile, tileB, B_in_tile);
int thr_A_next = co_rank
                (thr_C_next, tileA, A_in_tile, tileB, B_in_tile);
```

Find tile A input bounds for thread.

Find Per-Thread Input Bounds for B

```c
int thr_B_curr = thr_C_curr - thr_A_curr;
int thr_B_next = thr_C_next - thr_A_next;
```

Compute tile B input bounds for thread.
Merge Each Thread’s Shared Memory Segments

```c
merge_sequential
(tileA + thr_A_curr, thr_A_next - thr_A_curr,
tileB + thr_B_curr, thr_B_next - thr_B_curr,
C + blk_C_curr + C_produced + thr_C_curr);
```

Remember that your version should merge into a shared memory tile and then write back collaboratively to C.

Variable Updates Left for You in Lab 8

```c
for (int counter = 0; num_tiles > counter; counter++) {
    // load tile
    // process tile
    // advance variables for next tile
}
```

This part also left for you.

Advantages of the Tiled Merge Kernel

- **Reduced global memory traffic** for `co_rank`.
- **Coalesced loads** from A and B.
- Thread-level `co_rank` calls
 - use shared memory and
 - reduced load imbalance by limiting range to within a tile.
- **Coalesced stores** to C.

Remaining Problem with Tiled Merge Kernel

But we still have an obvious inefficiency: only half of the data loaded in each tile iteration are actually used!

How can we fix this problem?

- Copy unused data to the start of each tile.
- Probably need to add double-buffering … right?
- Or use cyclic / circular buffers. A bit tricky.
Cyclic Buffers Common in Systems Apps

- Cyclic/circular buffering fairly common in systems applications.
- examples:
 - fixed hardware resources
 - avoid dynamic allocation overhead for high-performance software (in OS, for example)
 - avoid copying / allocation in high-performance software

Count States for a Small Buffer

There are a couple of tricky aspects.

Consider a 256-entry buffer.

- How many entries in the buffer are valid?
- 0 to 256. That’s 257 possible answers.
- Where does the data start?
- Index 0 to 255. That’s 256 possible answers.

Too Few Bits Means Disallowing States

If there’s no data,
- the starting point doesn’t matter.
- So we have 65,537 (2^{16} + 1) possible states.
If we use two 8-bit indices (start and end)
- to record the state of the buffer,
- we have an issue.
 Such a design must guarantee that the buffer is either never full or never empty.

Larger Indices Allows Use of All States

Alternatively, we can use bigger indices.

Consider 16-bit indices for our 256-entry buffer.
- Start + 256 == End means full.
- Start == End means empty.
These conditions are the same mod 256 (when mapped to actual locations in buffer).

The extra index bits differentiate full from empty.
Usually, Choose Power of 2 Sizes

In software, extra index bits are cheap, hence typical.

Index wrap can also lead to problems:
• integer indices wrap at 2^m.
• If buffer length does not divide 2^m evenly,
• index wrapping shifts position in buffer!

So we usually choose power of 2 sizes for buffers.

With Proper Design, Not Too Hard to Use

Once we define a cyclic buffer using these rules—
• power of 2 length (2^k) and
• indices with extra bits—
using such a buffer is fairly easy:
• indices virtualize physical buffer as many virtual copies lined up one after another.
• On each access, transform “virtual” index into a real index using $mod\ 2^k$.

Higher-level software can sometimes be oblivious to the circular nature of arrays (in the buffer).

Example of Tile Load with Cyclic Buffer

For example, $A_consumed$
• plays role of virtual index into tileA
• (instead of resetting to 0 for each tile).

```c
if (i + threadIdx.x < A_length - A_consumed) {
    tileA[i + threadIdx.x] = A[blk_A_curr + A_consumed + i + threadIdx.x];
}
```

Replace with $(i + threadIdx.x + A_consumed) \% tile_size$.

Example of Tile Load with Cyclic Buffer

But to avoid reloading data,
• we need a second virtual index to track
• how much has been loaded, A_loaded.

```c
if (i + threadIdx.x < A_length - A_consumed) {
    tileA[(i + threadIdx.x + A_consumed) % tile_size] = A[blk_A_curr + A_consumed + i + threadIdx.x];
}
```

Add condition $i + threadIdx.x + A_consumed \geq A_loaded$.
Example of Tile Load with Cyclic Buffer

We could then optimize by
• initializing i above 0 at the start of the loop
• (split the tile load loop into two loops for simplicity).

if (i + threadIdx.x + A_consumed >= A_loaded &&
 i + threadIdx.x < A_length - A_consumed) {
 tileA[(i + threadIdx.x + A_consumed) % tile_size] =
 A[blk_A_curr + A_consumed + i + threadIdx.x];
}
int c_curr = threadIdx.x * (tile_size/blockDim.x);
int c_next = (threadIdx.x+1) * (tile_size/blockDim.x);
c_curr = (c_curr <= C_length-C_completed) ? c_curr : C_length-C_completed;
c_next = (c_next <= C_length-C_completed) ? c_next : C_length-C_completed;
/* find co-rank for c_curr and c_next */
int a_curr = co_rank_circular(c_curr, A_S, min(tile_size, A_length-A_completed),
B_S, min(tile_size, B_length-B_completed),
A_S_start, B_S_start, tile_size);
int b_curr = c_curr - a_curr;
int a_next = co_rank_circular(c_next, A_S, min(tile_size, A_length-A_completed),
B_S, min(tile_size, B_length-B_completed),
A_S_start, B_S_start, tile_size);
int b_next = c_next - a_next;
/* do merge in parallel */
merge_sequential_circular(A_S, a_next-a_curr,
B_S, b_next-b_curr,
C+C_curr+C_completed+c_curr,
A_S_start+a_curr, B_S_start+b_curr, tile_size);
/* Figure out the work has been done */
counter ++;
A_S_consumed = co_rank_circular(min(tile_size,C_length-C_completed),
A_S, min(tile_size, A_length-A_consumed),
B_S, min(tile_size, B_length-B_consumed),
A_S_start, B_S_start, tile_size);
B_S_consumed = min(tile_size, C_length-C_completed) - A_S_consumed;
A_consumed += A_S_consumed;
C_completed += min(tile_size, C_length-C_completed);
B_consumed = C_completed - A_consumed;
A_S_start = A_S_start + A_S_consumed;
if (A_S_start >= tile_size) A_S_start = A_S_start - tile_size;
B_S_start = B_S_start + B_S_consumed;
if (B_S_start >= tile_size) B_S_start = B_S_start - tile_size;
__syncthreads();

/* Simplify view */
int co_rank_circular(int k, int* A, int m, int* B, int n, int A_S_start, int B_S_start, int tile_size)
{
int i= k<m ? k : m; //i = min(k,m)
int j = k- i;
int i_low = 0>(k-n) ? 0 : k-n; //i_low = max(0, k-n)
int j_low = 0>(k-m) ? 0: k-m; //i_low = max(0,k-m)
delta;
bool active = true;
while(active)
{
int i_cir = (A_S_start+i >= tile_size) ?
A_S_start+i-tile_size : A_S_start+i;
int i_m_1_cir = (A_S_start+i-1 >= tile_size)?
A_S_start+i-1-tile_size:
A_S_start+i-1;
int j_cir = (B_S_start+j >= tile_size) ?
B_S_start+j-tile_size : B_S_start+j;
int j_m_1_cir = (B_S_start+i-1 >= tile_size)?
B_S_start+j-1-tile_size:
B_S_start+j-1;
if (i > 0 && j < n && A[i_m_1_cir] > B[j_cir]) {
delta = ((i - i_low +1) >> 1) ; //ceil(i-i_low)/2)
j_low = j;
i = i - delta;
j = j + delta;
} else if (j > 0 && i < m && B[j_m_1_cir] >= A[i_cir]) {
delta = ((j - j_low +1) >> 1) ;
i_low = i;
i = i + delta;
j = j - delta;
} else {
active = false;
}
}
return i;
void merge_sequential_circular(int *A, int m, int *B, int n, int *C, int A_S_start, int B_S_start, int tile_size) {
 int i = 0; //virtual index into A
 int j = 0; //virtual index into B
 int k = 0; //virtual index into C
 while ((i < m) && (j < n)) {
 int i_cir = (A_S_start + i >= tile_size)? A_S_start+i-tile_size: A_S_start+i;
 int j_cir = (B_S_start + j >= tile_size)? B_S_start+j-tile_size: B_S_start+j;
 if (A[i_cir] <= B[j_cir]) {
 C[k++] = A[i_cir]; i++;
 } else {
 C[k++] = B[j_cir]; j++;
 }
 }
 if (i == m) { //done with A[], handle remaining B[]
 for (; j < n; j++) {
 int j_cir = (B_S_start + j >= tile_size)? B_S_start+j-tile_size: B_S_start+j;
 C[k++] = B[j_cir];
 }
 } else { //done with B[], handle remaining A[]
 for (; i < m; i++) {
 int i_cir = (A_S_start + i >= tile_size)? A_S_start+i-tile_size: A_S_start+i;
 C[k++] = A[i_cir];
 }
 }
}