ECE 508
Manycore Parallel Algorithms

Lecture 11: Parallel Ordered Merge

Background

• We started with easy parallelism,
 – used atomics to coordinate and
 – optimized the access patterns.
• Next, we looked at reorganizing data.
• With graphs, we looked at
 – finding the parallelism from step to step and
 – Using hierarchical kernels and dynamic
 parallelism to leverage the parallelism.
• But some algorithms may seem inherently sequential.

Objective

• to learn techniques for high-performance parallel
 merge sort
 – input identification
 – tiling for coalescing
 – circular buffering for data reuse
• to learn to hide complexities from library users

Sorting is an Important Problem

• **Sorting is a fundamental operation** in computing.
• Covered early, with many algorithms.
• Sort has long been a **challenge for parallel systems**.
• In my first parallel programming class,
 – we had a sorting competition.
 – Each person got a random algorithm
 and a random machine.
 – I got bitonic sort ($O(N^2)$) on a Cray,
 – so I had to argue that my constant was smallest!
Architecture Matters to the Algorithm

A few weeks ago, I mentioned NOWSort.

- On a cluster of \(N \) workstations, one…
 - oversamples to pick \(N \) splitters,
 - broadcasts the splitters,
 - bins data on each machine (based on the splitters),
 - sends the bins (all-to-all communication), and
 - performs the final sort locally.
- But those are CPUs—we need a good GPU sort for the last step.

We Focus on Parallel Merge Sort

- Let’s look at merge sort: sort chunks in parallel, then merge the chunks.
- Merge sort is also a building block for other sorting algorithms.
- We need to be careful about complexity; avoid adding too much extra work.

Merge by Repeatedly Choosing the Smaller

Choose smaller element from unused part of \(A \) and \(B \).

If equal, choose from \(A \) to support stable sorts (in which elements of equal value remain in the same order).

Implementation of Sequential Merge

```c
void merge_sequential (int* A, int m, int* B, int n, int* C) {
    int i = 0; //index into A
    int j = 0; //index into B
    int k = 0; //index into C
    while (i < m && j < n) {
        if (A[i] < B[j]) {
            C[k] = A[i];
            i++;
        } else {
            C[k] = B[j];
            j++;
        }
        k++;
    }
    while (i < m) {
        C[k] = A[i];
        i++;
        k++;
    }
    while (j < n) {
        C[k] = B[j];
        j++;
        k++;
    }
}
```
Copy Until One List is Empty

```c
void merge_sequential (int* A, int m, int* B, int n, int *C) {
    int i = 0;  //index into A
    int j = 0;  //index into B
    int k = 0;  //index into C
    while (i < m && j < n) {
        if (A[i] <= B[j]) {
            C[k++] = A[i++];
        } else {
            C[k++] = B[j++];
        }
    }
    ...  // Copy remainder of one list here.
}
```

Then Copy Array Remainder to Result

```c
if (i == m) {
    while (j < n) {
        C[k++] = B[j++];
    }
} else {
    while (j < n) {
        C[k++] = A[i++];
    }
}
```

Can We Find Parallelism?

So … what can we parallelize?

- Each position depends on all previous choices.
- But not really on the details of those choices.
- We’ve seen this problem before, actually.

Pick a Splitter and Use it to Split!

Remember dynamic parallelism with neighbor lists?

- Pick the middle element of A. Say it has value X.
- Binary (N-ary) search for the first element Y of B such that Y >= X.
Sections Can be Merged in Parallel

Can **merge yellow and blue** regions **in parallel**!

Array A may contain more X values—that's ok.

All values in this section are < X.

A “Scatter” Approach?

- In 2019, Wen-mei claimed that
 - no one had implemented a scatter approach:
 - each thread takes a section of input A and B
 values and delivers them to the final location.
 - The approach just outlined (split, scan, merge sections) occurred to me immediately (on the objective slide).

Parallelize Splitting

Divide and conquer?

No.

Parallelize!

Only total size (in both arrays) matters for load balance; can do hierarchically and use dynamic parallelism.

Let’s Flip Around the Splitter Idea

- Maybe no one has gotten it to go fast?
- Try it if you’d like—maybe it’s a paper.
- Hard to believe no one has tried that approach, though.
- Especially given that we’re now going to use the same idea in reverse…”
Name the Number of Elements per Array

• **Pick** some number \(i \) of **elements from start of** \(A \).
• These elements **join with** some number \(j \) of **elements from start of** \(B \) (find \(j \) as described, if desired).
• Together, they **become first** \(k = i + j \) elements of \(C \).

Co-Rank of an Output Prefix String

In this context, the **tuple** \((i, j)\) is the **co-rank** of \(A \) and \(B \) for the prefix of \(k \) elements of \(C \).

Given \(A \), \(B \), and a value \(k \), can we compute \((i, j)\)?

• Of course!
• First, we know that \(j = k - i \), so computing \(i \) **suffices**.
• Also, the **value of** \(i \) is **unique** (given \(A \), \(B \), and \(k \)).
• Let’s look at the arrays again…

First Constraint Generalizes Splitter Search

First, we know that

• the **element at the end of** the yellow region in \(A \) — \(X \)
• must be **sorted before** the element just **after** the yellow region in \(B \) — \(Y \).
• So \(X \leq Y \). That was our splitter search condition.
• Let’s generalize to \((j = n) \text{ OR } (A[i - 1] \leq B[j])\).

Second Constraint Arises from Swapping Arrays

Now do the **same with** the **arrays reversed**:

• the **element at the end of** the yellow region in \(B \)
• must be **sorted before** the element just **after** the yellow region in \(A \).
• That gives \((i = m) \text{ OR } (A[i] > B[j - 1])\).
• (We know \(A[i] \geq X > B[j - 1] \) in the splitter case.)
Find Initial Lower Bound for Binary Search
But now we can **find i using binary (N-ary) search**!

What is the minimum value of i? 0?
What if \(k > n \) (n is the length of B)?
Even if all elements of B are first in C, C must include some of A.

So the smallest possible i is max (0, \(k - n \)).

Find Initial Upper Bound for Binary Search
And the largest i? m?
What if \(k < m \)?
i cannot be greater than k, either.

So the largest possible i is min (k, m).

Now we can simply search…

Computing the Co-Rank
```c
int co_rank (int k, int* A, int m, int* B, int n)
{
    int low = (k > n ? k - n : 0);
    int high = (k < m ? k : m);
    while (low < high) {
        ... Search until found or only one choice remains (next slide).
    }
    return low; Remaining choice must be correct.
}
```

Binary Search Division for Co-Rank
```c
int i = low + (high - low) / 2; Compute i and j.
int j = k - i; Need more from B.
if (j < n && A[i - 1] > B[j]) {
    high = i - 1; Need more from A.
} else if (i < m && A[i] <= B[j - 1]) {
    low = i + 1;
} else {
    return i; Both conditions met? We're done!
}
```
Co-Rank Reference Version

```c
int co_rank (int k, int* A, int m, int* B, int n)
{
    int low = (k > n ? k - n : 0);
    int high = (k < m ? k : m);
    while (low < high) {
        int i = low + (high - low) / 2;
        int j = k - i;
        if (A[i] > B[j] && i > 0 && j < n) {
            high = i - 1;
        } else if (A[i] <= B[j] && i < m && j > 0) {
            low = i + 1;
        } else {
            return i;
        }
    }
    return low;
}
```

This code has now been tested...

Wen-mei’s Version (part 1 of 2)

```c
1 int co_rank(int k, int* A, int m, int* B, int n) {
2    int i = k < m ? k : m;  // i = min(k, m)
3    int j = k - i;
4    int i_low = k > n ? 0 : k - n;  // i_low = max(0, k - n)
5    int j_low = k < m ? 0 : k - m;  // j_low = max(0, k - m)
6    int delta;
7    bool active = true;
8    while (active) {
9        if (i > 0 && j < n && A[i] > B[j]) {
10           delta = ((i - i_low + 1) >> 1);  // ceil(i - i_low) / 2
11           j_low = j;
12           j = j + delta;
13        } else if (j > 0 && i < m && B[j] >= A[i]) {
14           delta = ((j - j_low + 1) >> 1);  // ceil(j - j_low) / 2
15           i_low = i;
16           i = i + delta;
17           j = j - delta;
18        } else {
19           active = false;
20        }
21    }
22    return i;
23 }
```

Wen-mei’s Version (part 2 of 2)

```c
13      i = i - delta;
14  } else if (j > 0 && i < m && B[j-1] >= A[i]) {
15      delta = ((j - j_low +1) >> 1) ;
16      i_low = i;
17      i = i + delta;
18      j = j - delta;
19  } else {
20      active = false;
21  }
22
23  return i;
24 }
```

Gather Approach Assigns Segment of C per Thread

So … now what?

Gather!

Assign a segment of C to each thread.

Three threads, for example…

A = [1, 7, 8, 9, 10]
B = [7, 10, 10, 12]
C = [1, 7, 7, 9, 10, 10, 12]

thread 0	thread 1	thread 2
A = [1, 7, 8, 9, 10]
B = [7, 10, 10, 12]
C = [1, 7, 7, 9, 10, 10, 12]
Each thread uses co-rank twice

- to obtain starting points \((i_{\text{start}}, j_{\text{start}})\)
- to obtain ending points \((i_{\text{end}}, j_{\text{end}})\).

Then performs a sequential merge.

Thread 1, for example...

- Co-rank 3 gives \((i_{\text{start}}, j_{\text{start}}) = (2,1)\).
- Co-rank 6 gives \((i_{\text{end}}, j_{\text{end}}) = (5,1)\).

Thread 1’s subset of \(B\) is empty. That’s ok.

Work necessary for co-rank calls is imbalanced.

Higher-indexed threads have a bigger search space.

But use of binary search in co-rank reduces imbalance.

Basic merge kernel is then pretty simple:

- Assign ceil (size of \(C\) / # of threads) elements per thread
- Find thread’s bounds in \(C\).
- Use co_rank to find input bounds.
- Use sequential_merge to produce thread’s output.
Find Thread Index and Elements per Thread

```c
__global__ void merge_basic_kernel
(int* A, int m, int* B, int n, int* C)
{
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    int elt = ceil ((m+n)*1.0f/(blockDim.x*gridDim.x));
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    int elt = ceil ((m+n)*1.0f/(blockDim.x*gridDim.x));
    int k_curr = tid * elt;
    if (m + n < k_curr) { k_curr = m + n; }
    int k_next = k_curr + elt;
    if (m + n < k_next) { k_next = m + n; }
    int i_curr = co_rank (k_curr, A, m, B, n);
    int i_next = co_rank (k_next, A, m, B, n);
    int j_curr = k_curr - i_curr;
    int j_next = k_next - i_next;
    merge_sequential (&A[i_curr], i_next - i_curr,
    &B[j_curr], j_next - j_curr,
    &C[k_curr]);
}
```

Find Start and End Indices in Output Array C

```c
__global__ void merge_basic_kernel
(int* A, int m, int* B, int n, int* C)
{
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    int elt = ceil ((m+n)*1.0f/(blockDim.x*gridDim.x));
    int k_curr = tid * elt;
    if (m + n < k_curr) { k_curr = m + n; }
    int k_next = k_curr + elt;
    if (m + n < k_next) { k_next = m + n; }
    int start index in C
    int end index in C
}
```

Co-Rank, then Merge

```c
int i_curr = co_rank (k_curr, A, m, B, n);  
int i_next = co_rank (k_next, A, m, B, n);  
int j_curr = k_curr - i_curr;
int j_next = k_next - i_next;
merge_sequential (&A[i_curr], i_next - i_curr,
&B[j_curr], j_next - j_curr,
&C[k_curr]);
```

Basic Merge Kernel Performs Poorly

- Global memory accesses not coalesced:
 - binary search (co_rank) on A/B, and
 - sequential merge reads and writes.

- Also lots of localized control divergence:
 - co_rank search direction and depth, and
 - sequential merge A/B select, final list copy.
Solution: Aggregate, Collaborate, Tile

Consider A and B segments for threads in a block.

- Only need aggregate bounds to allow collaborative load/store to/from shared memory.
- Choose one thread per block to find bounds, so reduce pressure on global memory.
- Can tile segment loads to fit shared memory.
- Can determine per-thread bounds using co_rank on shared memory data.

Representative Thread(s) Find(s) Bounds

Share A and B bounds with all threads.

Operate on Tiles in Shared Memory

Read tiles collaboratively into shared memory.

Say we use all data from tile A. What comes next:
- something from tile B?
- Or something not yet in shared memory (from A)?

So size of tile C ≤ min (size of tile A, size of tile B).

We’ll set all three to be equal size.

How Much Can We Merge?

A question for you:

What is the relationship between the sizes of tiles for A, B, and C?

Hint: how much data can we safely write into C?
Write Back to C Collaboratively

We use half of the data from tiles A and B.

Tile C is then written back to C collaboratively.

Discard Remaining Data and Load Next Tile

Then what? Start over! Flush and load next tile.

(2× bandwidth loss—we’ll come back later)

Handle End of Data Correctly

Oops! B has too little data left to fill a tile!

That’s ok: we know B is out of data, not just tile B—just need to use that difference in the code!

Performance Hints for Lab 8

Some performance guidelines…

• Thread block output sections should have at least a few thousand elements.
• Tiles should have at least a few hundred elements.
• Each thread should be responsible for tens of outputs per tile.

Now, let’s look at some code!
Tile Size Passed as Parameter

```c
__global__ void merge_tiled_kernel
(int* A, int m, int* B, int n,
 int* C, int tile_size)
{
    extern __shared__ int shareAB[];
    int elt = ceil((m + n) * 1.0f / gridDim.x);
    int blk_C_curr = blockIdx.x * elt;
    int blk_C_next = blk_CCurr + elt;
    if (m + n < blk_C_next) { blk_C_next = m + n; }
}
```

Tiles Split Shared Memory

```c
__global__ void merge_tiled_kernel
(int* A, int m, int* B, int n,
 int* C, int tile_size)
{
    extern __shared__ int shareAB[];
    int* tileA = &shareAB[0];
    int* tileB = &shareAB[tile_size];
}
```

All Threads Find Output Bounds

```c
int elt = ceil((m + n) * 1.0f / gridDim.x);
int blk_C_curr = blockIdx.x * elt;
int blk_C_next = blk_C_curr + elt;
if (m + n < blk_C_next) { blk_C_next = m + n; }
```

Representative Thread(s) Find Input Bounds

```c
if (threadIdx.x == 0) {
    tileA[0] = co_rank(blk_C_curr, A, m, B, n);
    tileA[1] = co_rank(blk_C_next, A, m, B, n);
}
__syncthreads();
```

Tiles Split Shared Memory

- **tileA** occupies the first half of shared memory.
- **tileB** occupies the second half.

Your version needs another block for tileC.
All Threads Compute Bounds for B

```
if (threadIdx.x == 0) {
  tileA[0] = co_rank (blk_C_curr, A, m, B, n);
  tileA[1] = co_rank (blk_C_next, A, m, B, n);
}
__syncthreads();
```

All threads read and compute input bounds.

```
int blk_A_curr = tileA[0];
int blk_A_next = tileA[1];
int blk_B_curr = blk_C_curr - blk_A_curr;
int blk_B_next = blk_C_next - blk_A_next;
__syncthreads();
```

Finish reads before loading first tile.

Representative Thread(s) Find(s) Bounds

Share A and B bounds with all threads.

Compute Lengths and Number of Tiles

```
int C_length = blk_C_next - blk_C_curr;
int A_length = blk_A_next - blk_A_curr;
int B_length = blk_B_next - blk_B_curr;
int num_tiles =
  ceil (C_length * 1.0f / tile_size);
int C_produced = 0;
int A_consumed = 0;
int B_consumed = 0;
```

Compute block’s segment lengths.

Tile Loop Contains Three Steps

```
for (int counter = 0; num_tiles > counter; counter++) {
  // load tile
  // process tile
  // advance variables for next tile
}
```
Read remaining data (up to a tile) for block into tileA.

```
for (int i = 0; i < tile_size; i += blockDim.x) {
    if (i + threadIdx.x < A_length - A_consumed) {
        tileA[i + threadIdx.x] = A[blk_A_curr + A_consumed + i + threadIdx.x];
    }
}
```

Do the same for tileB.

```
for (int i = 0; i < tile_size; i += blockDim.x) {
    if (i + threadIdx.x < A_length - A_consumed) {
        tileA[i + threadIdx.x] = A[blk_A_curr + A_consumed + i + threadIdx.x];
    }
    if (i + threadIdx.x < B_length - B_consumed) {
        tileB[i + threadIdx.x] = B[blk_B_curr + B_consumed + i + threadIdx.x];
    }
}
```

Wait for tile loads to complete.

```
__syncthreads();
```

Write Back to C Collaboratively

```
tileA

We use half of the data from tiles A and B.

Tile C is then written back to C collaboratively.

C
```

Find Per-Thread Output Bounds

```
int per_thread = tile_size / blockDim.x;
int thr_C_curr = threadIdx.x * per_thread;
int thr_C_next = thr_C_curr + per_thread;
```

This ratio should be integral.

Compute per-thread output bounds.
Do Not Produce More Output than Needed

```cpp
int per_thread = tile_size / blockDim.x;
int thr_C_curr = threadIdx.x * per_thread;
int thr_C_next = thr_C_curr + per_thread;
int C_remaining = C_length - C_produced;
if (C_remaining < thr_C_curr) {
    thr_C_curr = C_remaining;
}
if (C_remaining < thr_C_next) {
    thr_C_next = C_remaining;
}
```

Limit to remaining output needed.

Compute Data Actually in Tiles A and B

```cpp
int A_in_tile = A_length - A_consumed;
if (tile_size < A_in_tile) { A_in_tile = tile_size; }
int B_in_tile = B_length - B_consumed;
if (tile_size < B_in_tile) { B_in_tile = tile_size; }
```

Compute amount in tiles.

Find Per-Thread Input Bounds for A

```cpp
int thr_A_curr = co_rank
    (thr_C_curr, tileA, A_in_tile, tileB, B_in_tile);
int thr_A_next = co_rank
    (thr_C_next, tileA, A_in_tile, tileB, B_in_tile);
```

Find tile A input bounds for thread.

Compute Per-Thread Input Bounds for B

```cpp
int thr_B_curr = thr_C_curr - thr_A_curr;
int thr_B_next = thr_C_next - thr_A_next;
```

Compute tile B input bounds for thread.
Merge Each Thread’s Shared Memory Segments

merge_sequential
(tileA + thr_A_curr, thr_A_next - thr_A_curr,
tileB + thr_B_curr, thr_B_next - thr_B_curr,
C + blk_C_curr + C_produced + thr_C_curr);

Variable Updates Left for You in Lab 8

for (int counter = 0; num_tiles > counter; counter++) {
 // load tile
 // process tile
 // advance variables for next tile
}

Advantages of the Tiled Merge Kernel

- **Reduced global memory traffic** for `co_rank`.
- **Coalesced loads** from `A` and `B`.
- Thread-level `co_rank` calls
 - use shared memory and
 - reduced load imbalance by limiting range to within a tile.
- **Coalesced stores** to `C`.

Remaining Problem with Tiled Merge Kernel

But we still have an obvious inefficiency:
only half of the data loaded in each tile iteration are actually used!

How can we fix this problem?
- Copy unused data to the start of each tile.
- Probably need to add double-buffering … right?
- Or use cyclic / circular buffers. A bit tricky.
Cyclic Buffers Common in Systems Apps

- Cyclic/circular buffering fairly common in systems applications.
- examples:
 - fixed hardware resources
 - avoid dynamic allocation overhead for high-performance software (in OS, for example)
 - avoid copying / allocation in high-performance software

Count States for a Small Buffer

There are a couple of tricky aspects.

Consider a 256-entry buffer.

- How many entries in the buffer are valid?
- 0 to 256. That’s 257 possible answers.
- Where does the data start?
- Index 0 to 255. That’s 256 possible answers.

Too Few Bits Means Disallowing States

If there’s no data,
- the starting point doesn’t matter.
- So we have 65,537 \((2^{16} + 1)\) possible states.

If we use two 8-bit indices (start and end)
- to record the state of the buffer,
- we have an issue.
 - Such a design must guarantee that the buffer is either never full or never empty.

Larger Indices Allows Use of All States

Alternatively, we can use bigger indices.

Consider 16-bit indices for our 256-entry buffer.

- Start + 256 == End means full.
- Start == End means empty.

These conditions are the same mod 256 (when mapped to actual locations in buffer).

The extra index bits differentiate full from empty.
Usually, Choose Power of 2 Sizes
In software, extra index bits are cheap, hence typical.

Index wrap can also lead to problems:
• integer indices wrap at 2^m.
• If buffer length does not divide 2^m evenly,
• index wrapping shifts position in buffer!

So we usually choose power of 2 sizes for buffers.

With Proper Design, Not Too Hard to Use
Once we define a cyclic buffer using these rules—
• power of 2 length (2^k) and
• indices with extra bits—
using such a buffer is fairly easy:
• indices virtualize physical buffer as many
 virtual copies lined up one after another.
• On each access, transform “virtual” index
 into a real index using $\mod 2^k$.

Higher-level software can sometimes be oblivious
 to the circular nature of arrays (in the buffer).

Example of Tile Load with Cyclic Buffer
For example, A_{consumed}
• plays role of virtual index into tileA
• (instead of resetting to 0 for each tile).

```
if (i + threadIdx.x < A_length - A_consumed) {
    tileA[i + threadIdx.x] =
    A[blk_A_curr + A_consumed + i + threadIdx.x];
}
```
Replace with $(i + threadIdx.x + A_{\text{consumed}}) \mod tile_{\text{size}}$.

Example of Tile Load with Cyclic Buffer
But to avoid reloading data,
• we need a second virtual index to track
 how much has been loaded, A_{loaded}.

```
if (i + threadIdx.x < A_length - A_consumed) {
    tileA[(i + threadIdx.x + A_{\text{consumed}}) \mod tile_{\text{size}}] =
    A[blk_A_curr + A_{\text{consumed}} + i + threadIdx.x];
}
```
Add condition $i + threadIdx.x + A_{\text{consumed}} \geq A_{\text{loaded}}$.
Example of Tile Load with Cyclic Buffer

We could then optimize by

- **initializing i above 0** at the start of the loop
- (split the tile load loop into two loops for simplicity).

\[
\begin{align*}
&\text{if } (i + \text{threadIdx.x} + A_{\text{consumed}} \geq A_{\text{loaded}} \land \land\
& i + \text{threadIdx.x} < A_{\text{length}} - A_{\text{consumed}})\
& \text{tileA}[(i + \text{threadIdx.x} + A_{\text{consumed}}) \% \text{tile.size}] = A[\text{blk}_A_{\text{curr}} + A_{\text{consumed}} + i + \text{threadIdx.x}];
\end{align*}
\]

Also See Code in the Text

More example code and explanations are available in the textbook.

But … Wen-mei’s style is pretty different.

I’ll leave his code in the printed slides, too.
int c_curr = threadIdx.x * (tile_size/blockDim.x);
int c_next = (threadIdx.x+1) * (tile_size/blockDim.x);
c_curr = (c_curr <= C_length-C_completed) ? c_curr : C_length-C_completed;
c_next = (c_next <= C_length-C_completed) ? c_next : C_length-C_completed;
/* find co-rank for c_curr and c_next */
int a_curr = co_rank_circular(c_curr,
 A_S, min(tile_size, A_length-A_completed),
 B_S, min(tile_size, B_length-B_completed),
 A_S_start, B_S_start, tile_size);
int b_curr = c_curr - a_curr;
int a_next = co_rank_circular(c_next,
 A_S, min(tile_size, A_length-A_completed),
 B_S, min(tile_size, B_length-B_completed),
 A_S_start, B_S_start, tile_size);
int b_next = c_next - a_next;
/* do merge in parallel */
merge_sequential_circular(A_S, a_next-a_curr,
 B_S, b_next-b_curr,
 C+C_curr+C_completed+c_curr,
 A_S_start+a_curr, B_S_start+b_curr, tile_size);
/* Figure out the work has been done */
counter ++;
A_S_consumed = co_rank_circular(min(tile_size,C_length-C_completed),
 A_S, min(tile_size, A_length-A_consumed),
 B_S, min(tile_size, B_length-B_consumed),
 A_S_start, B_S_start, tile_size);
B_S_consumed = min(tile_size, C_length-C_completed) - A_S_consumed;
A_consumed += A_S_consumed;
C_completed += min(tile_size, C_length-C_completed);
B_consumed = C_completed - A_consumed;
A_S_start = A_S_start + A_S_consumed;
if (A_S_start >= tile_size) A_S_start = A_S_start - tile_size;
B_S_start = B_S_start + B_S_consumed;
if (B_S_start >= tile_size) B_S_start = B_S_start - tile_size;
__syncthreads();

int co_rank_circular(int k, int* A, int m, int* B, int n, int A_S_start, int B_S_start, int tile_size){
 int i= k<m ? k : m; //i = min(k,m)
 int j = k- i;
 int i_low = 0>(k-n) ? 0 : k-n; //i_low = max(0, k-n)
 int j_low = 0>(k-m) ? 0: k-m; //i_low = max(0,k-m)
 int delta;
 bool active = true;
 while(active)
 {
 int i_cir = (A_S_start+i >= tile_size) ?
 A_S_start+i-tile_size : A_S_start+i;
 int i_m_1_cir = (A_S_start+i-1 >= tile_size)?
 A_S_start+i-1-tile_size: A_S_start+i-1;
 int j_cir = (B_S_start+j >= tile_size) ?
 B_S_start+j-tile_size : B_S_start+j;
 int j_m_1_cir = (B_S_start+j-1 >= tile_size)?
 B_S_start+j-1-tile_size: B_S_start+j-1;
 if (i > 0 && j < n && A[i_m_1_cir] > B[j_cir]) {
 delta = ((i - i_low +1) >> 1) ; //ceil(i-i_low)/2)
 j_low = j;
 i = i - delta;
 j = j + delta;
 } else if (j > 0 && i < m && B[j_m_1_cir] >= A[i_cir]) {
 delta = ((j - j_low +1) >> 1) ;
 i_low = i;
 i = i + delta;
 j = j - delta;
 } else {
 active = false;
 }
 }
 return i;
}
void merge_sequential_circular(int *A, int m,
 int *B, int n, int *C, int A_S_start,
 int B_S_start, int tile_size)
{
 int i = 0; //virtual index into A
 int j = 0; //virtual index into B
 int k = 0; //virtual index into C

 while ((i < m) && (j < n)) {
 int i_cir = (A_S_start + i >= tile_size)?
 A_S_start+i-tile_size; A_S_start+i;
 int j_cir = (B_S_start + j >= tile_size)?
 B_S_start+j-tile_size; B_S_start+j;

 if (A[i_cir] <= B[j_cir]) {
 C[k++]+= A[i_cir]; i++;
 } else {
 C[k++] = B[j_cir]; j++;
 }
 }

 if (i == m) { //done with A[], handle remaining B[]
 for (; j < n; j++) {
 int j_cir = (B_S_start + j >= tile_size)?
 B_S_start+j-tile_size; B_S_start+j;
 C[k++] = B[j_cir];
 }
 } else { //done with B[], handle remaining A[]
 for (; i < m; i++) {
 int i_cir = (A_S_start + i >= tile_size)?
 A_S_start+i-tile_size; A_S_start+i;
 C[k++] = A[i_cir];
 }
 }
}