ECE408/CS483/CSE408 Spring 2020

Applied Parallel Programming

Lecture 5:
Locality and Tiled Matrix Multiplication

Objective

• To learn to evaluate the performance implications of global memory accesses
• To prepare for MP-3: tiled matrix multiplication
• To learn to assess the benefit of tiling

The Problem: Accesses to Global Memory

```c
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{
    int Row = blockIdx.y*blockDim.y+threadIdx.y;
    int Col = blockIdx.x*blockDim.x+threadIdx.x;
    if ((Row < Width) && (Col < Width)) {
        float Pvalue = 0;
        for (int k = 0; k < Width; ++k)
            Pvalue += d_M[Row*Width+k] * d_N[k*Width+Col];
        d_P[Row*Width+Col] = Pvalue;
    }
}
```

Review: 4B of Data per FLOP

• Each threads access global memory
 – for elements of M and N:
 – 4B each, or 8B per pair.
 – (And once TOTAL to P per thread—ignore it.)
• With each pair of elements,
 – a thread does a single multiply-add,
 – 2 FLOP—floating-point operations.
• So for every FLOP,
 – a thread needs 4B from memory:
 – 4B / FLOP.
Review: Extremely Poor Performance

- One generation of GPUs:
 - 1,000 GFLOP/s of compute power, and
 - 150 GB/s of memory bandwidth.
- Dividing bandwidth by memory requirements:
 \[
 \frac{150 \text{ GB/s}}{4 \text{ B/FLOP}} = 37.5 \text{ GFLOP/s}
 \]
 which limits computation!

The Solution? Reuse Memory Accesses!

But 37.5 GFLOPs is a limit.

In an actual execution,
- memory is not busy all the time, and
- the code runs at about 25 GFLOPs.

To get closer to 1,000 GFLOPs
- we need to drastically cut down
 - accesses to global memory.

But … how?

A Common Programming Strategy

- The dilemma:
 - Matrices \(M \) and \(N \) are large.
 - They fit easily in global memory, but that’s slow.
 - Shared memory is fast, but \(M \) and \(N \) don’t fit.
- The solution:
 - Break \(M \) and \(N \) into tiles
 - (called blocks in the much older CPU literature).
 - Read a tile into shared memory.
 - Use the tile from shared memory.
 - Repeat until done.
A Common Programming Strategy

• In a GPU, only threads in a block can use shared memory.
• Thus, each block operates on separate tiles:
 – Read tile(s) into shared memory using multiple threads to exploit memory-level parallelism.
 – Compute based on shared memory tiles.
 – Repeat.
 – Write results back to global memory.

Declaring Shared Memory Arrays

```c
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {
    __shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];
    __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];
```
Idea: Place global memory data into Shared Memory for reuse

- Each input element is used to calculate WIDTH elements of P.
- Load each element into Shared Memory and have several threads use the local version to reduce memory bandwidth.

Loading a Tile

- All threads in a block participate
 - Each thread loads
 - one M element and
 - one N element
 - in basic tiling code.
- Assign the loaded element to each thread such that the accesses within each warp is coalesced (more later).

Tiled Multiply

- Break up the execution of the kernel into phases so that the data accesses in each phase are focused on one subset (tile) of M and N

Work for Block (0,0)
Threads use shared memory data in step 0.

Threads use shared memory data in step 1.

Threads use shared memory data in step 2.
Loading an Input Tile 0

Tile 0 2D indexing for each thread:

\[M[\text{Row}][tx] \]
\[N[ty][\text{Col}] \]

Loading an Input Tile 1

Accessing tile 1 in 2D indexing:

\[M[\text{Row}][1*\text{TILE WIDTH}+tx] \]
\[N[1*\text{TILE WIDTH}+ty][\text{Col}] \]

Loading an Input Tile m

However, recall that M and N are dynamically allocated and can only use 1D indexing:

\[M[\text{Row}][m*\text{TILE WIDTH}+tx] \]
\[M[\text{Row}]*\text{Width} + m*\text{TILE WIDTH} + tx \]
\[N[m*\text{TILE WIDTH}+ty][\text{Col}] \]
\[N[(m*\text{TILE WIDTH}+ty) * \text{Width} + \text{Col}] \]

Accessing a Tile

To perform the kth step of the product within the tile:

\[\text{subTileM}[ty][k] \]
\[\text{subTileN}[k][tx] \]
We're Not There Yet!

- But …

- How can a thread know …
 - That another thread has finished its part of the tile?
 - Or that another thread has finished using the previous tile?

We need to synchronize!

Leveraging Parallel Strategies

- **Bulk synchronous execution:** threads execute roughly in unison
 1. Do some work
 2. Wait for others to catch up
 3. Repeat

- **Much easier programming model**
 - Threads only parallel within a section
 - Debug lots of little programs
 - Instead of one large one.

- **Dominates high-performance applications**

Bulk Synchronous Steps Based on Barriers

- **How does it work?**
 Use a barrier to wait for thread to ‘catch up.’

- A barrier is a synchronization point:
 - each thread calls a function to enter barrier;
 - threads block (sleep) in barrier function until all threads have called;
 - after last thread calls function, all threads continue past the barrier.
Use __syncthreads for CUDA Blocks

- How does it work in CUDA? Only within thread blocks!
- The function: `void __syncthreads(void);`
- N.B.
 - All threads in block must enter (no subsets).
 - All threads must enter the SAME static call (not the same as all threads calling function!).

Barrier Trauma: What’s Actually Done?

- What exactly is guaranteed to have finished?
 - Are shared memory operations before a barrier (e.g., stores) guaranteed to have completed?
 - What about global memory ops?
 - What about atomic ops with no return values?
 - What about I/O operations?
- CUDA manual: all global and shared memory ops (which presumably includes atomic variants) have completed.
- Avoid assumptions about I/O (such as printf).

Tiled Matrix Multiplication Kernel

```c
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)
{
1. __shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];
2. __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];
3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;
// Identify the row and column of the P element to work on
5. int Row = by * TILE_WIDTH + ty; // note: blockDim.x == TILE_WIDTH
6. int Col = bx * TILE_WIDTH + tx; // blockDim.y == TILE_WIDTH
7. float Pvalue = 0;
// Loop over the M and N tiles required to compute the P element
// The code assumes that the Width is a multiple of TILE_WIDTH!
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
   // Collaborative loading of M and N tiles into shared memory
9.   subTileM[ty][tx] = M[Row*Width + m*TILE_WIDTH+tx];
10.  subTileN[ty][tx] = N[(m*TILE_WIDTH+ty)*Width+Col];
11.  __syncthreads();
12.  for (int k = 0; k < TILE_WIDTH; ++k)
13.    Pvalue += subTileM[ty][k] * subTileN[k][tx];
14.  __syncthreads();
15. }
16. P[Row*Width+Col] = Pvalue;
}
```

Compare with Basic MM Kernel

```c
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)
{
// Calculate the row index of the P element and M
int Row = blockIdx.y * blockDim.y + threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x * blockDim.x + threadIdx.x;
if ((Row < Width) && (Col < Width)) {
    float Pvalue = 0;
    // each thread computes one element of the block sub-matrix
    for (int k = 0; k < Width; ++k)
        Pvalue += M[Row*Width+k] * N[k*Width+Col];
P[Row*Width+Col] = Pvalue;
}
```
Use of Large Tiles Shifts Bottleneck

• Recall our example GPU: 1,000 GFLOP/s, 150 GB/s
 • 16x16 tiles use each operand for 16 operations
 – reduce global memory accesses by a factor of 16
 – 150GB/s bandwidth supports
 \((150/4)*16 = 600\) GFLOPS!
 • 32x32 tiles use each operand for 32 operations
 – reduce global memory accesses by a factor of 32
 – 150 GB/s bandwidth supports
 \((150/4)*32 = 1,200\) GFLOPS!
 – Memory bandwidth is no longer the bottleneck!

Also Need Parallel Accesses to Memory

• Shared memory size
 – implementation dependent
 – 64kB per SM in Maxwell (48kB max per block)
• Given TILE_WIDTH of 16 (256 threads / block),
 – each thread block uses
 \(2*256*4B = 2kB\) of shared memory,
 – which limits active blocks to 32;
 – max. of 2048 threads per SM,
 – which limits blocks to 8.
 – Thus up to \(8*512 = 4,096\) pending loads
 (2 per thread, 256 threads per block)

Another Good Choice: 32x32 Tiles

• Given TILE_WIDTH of 32 (1,024 threads / block),
 – each thread block uses
 \(2*1024*4B = 8kB\) of shared memory,
 – which limits active blocks to 8;
 – max. of 2,048 threads per SM,
 – which limits blocks to 2.
 – Thus up to \(2*2,048 = 4,096\) pending loads
 (2 per thread, 1,024 threads per block)

(same memory parallelism exposed)

Current GPU? Use Device Query

• Number of devices in the system
 int dev_count;
 cudaGetDeviceCount(&dev_count);
• Capability of devices
 cudaDeviceProp dev_prop;
 for (i = 0; i < dev_count; i++)
 {
 cudaGetDeviceProperties(&dev_prop, i);
 // decide if device has sufficient resources and capabilities
 }
 cudaDeviceProp is a built-in C structure type
 – dev_prop.dev_prop.maxThreadsPerBlock
 – Dev_prop.sharedMemoryPerBlock

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2018 ECE408/CS483/
University of Illinois at Urbana-Champaign
ANY MORE QUESTIONS?
READ CHAPTER 4!