Objective

- To learn to implement the different types of layers in a Convolutional Neural Network (CNN)

MLP (Multi-Layer Perceptron) for an Image

Consider a 250 x 250 image...
- input: 2D image treated as 1D vector
- Fully connected layer is huge:
 - $62,500 \times (250^2)$ weights per node!
 - Comparable number of nodes gives ~4B weights total!
- Need >1 hidden layer? Bigger images?
- Too much computation, and too much memory.
- Traditional feature detection in image processing uses
 - Filters \rightarrow \text{Convolution kernels}
 - Can we use them in neural networks?
Convolution vs Fully-Connected (Weight Sharing)

Convolution Naturally Supports Varying Input Sizes
- As discussed so far,
 - perceptron layers have fixed structure, so
 - number of inputs / outputs is fixed.
- Convolution enables variably-sized inputs
 (observations of the same kind of thing)
 - Audio recording of different lengths
 - Image with more/fewer pixels

Example Convolution Inputs

<table>
<thead>
<tr>
<th>Single-channel</th>
<th>Multi-channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D audio waveform</td>
<td>Skeleton animation data: 1-D joint angles for each joint</td>
</tr>
<tr>
<td>2D Fourier-transformed audio data</td>
<td>Color image data: 2D data for R,G,B channels</td>
</tr>
<tr>
<td>Convolve over frequency axis: invariant to frequency shifts Convolve over time axis: invariant to shifts in time</td>
<td></td>
</tr>
<tr>
<td>3D Volumetric data (example: medical imaging)</td>
<td>Color video: 2D data across 1D time for R,G,B channels</td>
</tr>
</tbody>
</table>

LeNet-5: CNN for hand-written digit recognition
Deep Learning Impact in Computer Vision

The Toronto team used GPUs and trained on 1.2M images in their 2012 winning entry.

Anatomy of a Convolution Layer

Input features/channels
- A inputs ($N_1 \times N_2$)

Convolution Layer (or per channel)
- B convolution kernels ($K_1 \times K_2$)

Output Features/channels (or summed over channels)
- A × B outputs
 $$(N_1 - K_1 + 1) \times (N_2 - K_2 + 1)$$

2-D Pooling (Subsampling)

- A subsampling layer
 - Sometimes with bias and non-linearity built in
- Common types: max, average, L^2 norm, weighted average
- Helps make representation invariant to size scaling and small translations in the input

Why Convolution (1)

- Sparse interactions
 - Meaningful features in small spatial regions
 - Need fewer parameters (less storage, better statistical characteristics, faster training)
 - Need multiple layers for wide receptive field
Why Convolution (2)

- **Parameter sharing**
 - Kernel is reused when computing layer output
- **Equivariant Representations**
 - If input is translated, output is translated the same way
 - Map of where features appear in input

Convolution

- 2-D Matrix
- $Y = W \otimes X$
- Kernel smaller than input: smaller receptive field
- Fewer Weights

Multi-Layer Percep.

- Vector
- $Y = w \cdot x + b$
- Maximum receptive field
- More weights

Forward Propagation

Weights W
- M feature maps
- C channels per map
- K x K pixels per channel

Input Features X
- B images
- C channels per image
- H x W pixels per channel

Output Size
- $H_{out} = H - K + 1$
- $W_{out} = W - K + 1$

Convolve W with X and sum over channels

Convolution Output Y
- B images
- M features per image
- H$_{out}$ x W$_{out}$ values per feature

Outputs Must Use Full Mask/Kernel

- Compute only this part of Y.

Weights W
- M feature maps
- C channels per map
- K x K pixels per channel

Input X
- B images
- C channels per image
- H x W pixels per channel

Output Y
- B images
- M features per image
- H$_{out}$ x W$_{out}$ values per feature
Example of the Forward Path of a Convolution Layer

Output Size
\[H_{out} = H - K + 1 \]
\[W_{out} = W - K + 1 \]

Convolution Output Y
- B=1 image
- M=2 features per image
- \(H_{out} \times W_{out} = 2 \times 2 \) values per feature

Weights W
- M=2 feature maps
- C=3 channels per map
- \(K \times K = 2 \times 2 \) pixels per channel

Input X
- B=1 image
- C=3 channels
- \(H \times W = 3 \times 3 \) pixels per channel

Sequential Code: Forward Convolutional Layer
```c
void convLayer_forward(int B, int M, int C, int H, int W, int K, float* X, float* W, float* Y) {
    int H_out = H - K + 1; // calculate H_out, W_out
    int W_out = W - K + 1;
    for (int b = 0; b < B; ++b) // for each image
        for (int m = 0; m < M; m++) // for each output feature map
            for (int h = 0; h < H_out; h++) // for each output value (two loops)
                for (int w = 0; w < W_out; w++) {
                    Y[b, m, h, w] = 0.0f; // initialize sum to 0
                    for (int c = 0; c < C; c++) // sum over all input channels
                        for (int p = 0; p < K; p++) // KxK filter
                            for (int q = 0; q < K; q++)
                                Y[b, m, h, w] += X[b, c, h + p, w + q] * W[m, c, p, q];
    }
}
```

A Small Convolution Layer Example

<table>
<thead>
<tr>
<th>X[b, 0, _, _]</th>
<th>X[b, 1, _, _]</th>
<th>X[b, 2, _, _]</th>
<th>W[0, 0, _, _]</th>
<th>Y[b, 0, _, _]</th>
<th>Y[b, 1, _, _]</th>
<th>Y[b, 2, _, _]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 0 1</td>
<td>0 2 1 0</td>
<td>1 2 1 0</td>
<td>1 1 1 1</td>
<td>1 0 1 0</td>
<td>0 1 1 1</td>
<td>1 2 1 0</td>
</tr>
<tr>
<td>1 1 3 2</td>
<td>1 1 0 2</td>
<td>1 3 2 0</td>
<td>2 2 2 0</td>
<td>2 1 0 3</td>
<td>1 3 2 0</td>
<td>2 1 0 3</td>
</tr>
<tr>
<td>0 2 2 0</td>
<td>0 3 2 1</td>
<td>0 1 3 2</td>
<td>2 1 0 3</td>
<td>2 1 0 3</td>
<td>0 1 3 2</td>
<td>2 1 0 3</td>
</tr>
<tr>
<td>2 1 0 3</td>
<td>1 1 0 2</td>
<td>3 3 2 0</td>
<td>2 1 0 3</td>
<td>2 1 0 3</td>
<td>3 3 2 0</td>
<td>2 1 0 3</td>
</tr>
</tbody>
</table>
A Small Convolution Layer Example

c = 1

$$
\begin{array}{cccc}
0 & 2 & 1 & 0 \\
1 & 1 & 3 & 2 \\
1 & 2 & 0 & 1 \\
0 & 2 & 2 & 0 \\
2 & 1 & 0 & 3
\end{array}
\quad
\begin{array}{cccc}
1 & 1 & 1 & 2 \\
2 & 2 & 3 & 1 \\
2 & 1 & 0 & 3 \\
1 & 1 & 0 & 2 \\
0 & 2 & 1 & 0
\end{array}
\quad
\begin{array}{cccc}
W[0,0, _] \\
W[0,1, _] \\
W[0,2, _] \\
W[0,3, _] \\
W[0,4, _]
\end{array}
\quad
\begin{array}{c}
Y[b,0, _]
\end{array}
$$

A Small Convolution Layer Example

c = 2

$$
\begin{array}{cccc}
0 & 2 & 1 & 0 \\
1 & 1 & 3 & 2 \\
1 & 2 & 0 & 1 \\
0 & 2 & 2 & 0 \\
2 & 1 & 0 & 3
\end{array}
\quad
\begin{array}{cccc}
1 & 1 & 1 & 2 \\
2 & 2 & 3 & 1 \\
2 & 1 & 0 & 3 \\
1 & 1 & 0 & 2 \\
0 & 2 & 1 & 0
\end{array}
\quad
\begin{array}{cccc}
W[0,0, _] \\
W[0,1, _] \\
W[0,2, _] \\
W[0,3, _] \\
W[0,4, _]
\end{array}
\quad
\begin{array}{c}
Y[b,0, _]
\end{array}
$$

Parallelism in a Convolution Layer

Output feature maps can be calculated in parallel
- Usually a small number, not sufficient to fully utilize a GPU

All output feature map pixels can be calculated in parallel
- All rows can be done in parallel
- All pixels in each row can be done in parallel
- Large number but diminishes as we go into deeper layers

All input feature maps can be processed in parallel, but need atomic operation or tree reduction (we’ll learn later)

Different layers may demand different strategies.

Design of a Basic Kernel

- Each block computes
 - a tile of output pixels for one feature
 - TILE_WIDTH pixels in each dimension
- Grid’s X dimension maps to M output feature maps
- Grid’s Y dimension maps to the tiles in the output feature maps (linearized order).
- (Grid’s Z dimension is used for images in batch, which we omit from slides.)
Assume

- \(M = 4 \) (4 output feature maps),
- thus 4 blocks in the X dimension, and
- \(W_{\text{out}} = H_{\text{out}} = 8 \) (8x8 output features).

If \(\text{TILE_WIDTH} = 4 \), we also need 4 blocks in the Y dimension:

- for each output feature,
- top two blocks in each column calculates the top row of tiles, and
- bottom two calculate the bottom row.

Consider an output feature map:

- width is \(W_{\text{out}} \), and
- height is \(H_{\text{out}} \).

Assume these are multiples of \(\text{TILE_WIDTH} \).

Let \(X_{\text{grid}} \) be the number of blocks needed in X dim (5 above).
Let \(Y_{\text{grid}} \) be the number of blocks needed in Y dim (4 above).

Host Code for a Basic Kernel: CUDA Grid

(Assuming \(W_{\text{out}} \) and \(H_{\text{out}} \) are multiples of \(\text{TILE_WIDTH} \).)

```c
#define TILE_WIDTH 16 // We will use 4 for small examples.
W_grid = W_out/TILE_WIDTH; // number of horizontal tiles per output map
H_grid = H_out/TILE_WIDTH; // number of vertical tiles per output map
Y = H_grid * W_grid;

#define blockDim(TILE_WIDTH, TILE_WIDTH, 1) // output tile for untiled code
#define gridDim(M, Y, 1); // output tile for untiled code

ConvLayerForward_Kernel<<< gridDim, blockDim>>>(...);
```

Partial Kernel Code for a Convolution Layer

```c
__global__ void ConvLayerForward_Basic_Kernel
(int C, int W_grid, int K, float* X, float* W, float* Y)
{
    int m = blockIdx.x;
    int h = (blockIdx.y / W_grid) * TILE_WIDTH + threadIdx.y;
    int w = (blockIdx.y % W_grid) * TILE_WIDTH + threadIdx.x;
    float acc = 0.0f;
    for (int c = 0; c < C; c++) { // sum over all input channels
        for (int p = 0; p < K; p++)
            for (int q = 0; q < K; q++)
                acc += X[c, h + p, w + q] * W[m, c, p, q];
    }
    Y[m, h, w] = acc;
}
```
Some Observations

Enough parallelism
- if the total number of pixels
- across all output feature maps is large
- (often the case for CNN layers)

Each input tile
- loaded M times (number of output features), so
- **not efficient in global memory bandwidth**, but block scheduling in X dimension should give cache benefits.

Subsampling (Pooling) by Scale N

<table>
<thead>
<tr>
<th>Convolution Output Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>B images</td>
</tr>
<tr>
<td>M features per image</td>
</tr>
<tr>
<td>H_{out} x W_{out} values per feature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsampling/Pooling Output S</th>
</tr>
</thead>
<tbody>
<tr>
<td>B images</td>
</tr>
<tr>
<td>M features per image</td>
</tr>
<tr>
<td>H_{S(N)} x W_{S(N)} values per feature</td>
</tr>
</tbody>
</table>

Average over N x N blocks, then calculate sigmoid

Output Size

\[
H_{S(N)} = \text{floor}\left(\frac{H_{out}}{N}\right) \\
W_{S(N)} = \text{floor}\left(\frac{W_{out}}{N}\right)
\]

Sequential Code: Forward Pooling Layer

```c
void poolingLayer_forward(int B, int M, int H_out, int W_out, int N, float* Y, float* S)
{
    for (int b = 0; b < B; ++b) // for each image
        for (int m = 0; m < M; ++m) // for each output feature map
            for (int x = 0; x < H_out/N; ++x) // for each output value (two loops)
                for (int y = 0; y < W_out/N; ++y) {
                    float acc = 0.0f; // initialize sum to 0
                    for (int p = 0; p < N; ++p) // loop over N x N block of Y (two loops)
                        for (int q = 0; q < N; ++q)
                            acc += Y[b, m, N*x + p, N*y + q];
                    acc /= N * N; // calculate average over block
                    S[b, m, x, y] = sigmoid(acc + bias[m]) // bias, non-linearity
                }
}
```

Kernel Implementation of Subsampling Layers

- straightforward mapping from grid to subsampled output feature map pixels
- in GPU kernel,
 - need to manipulate index mapping
 - for accessing the output feature map pixels
 - of the previous convolution layer.
- often merged into the previous convolution layer to save memory bandwidth
Backpropagation

Remember that Y is a linear sum of X values over channels (for each output feature). Derivatives are W values.

\[
Y = W \cdot X
\]

\[
\frac{dE}{dX} = \frac{dE}{dY} \cdot \frac{dY}{dX} = W \cdot \frac{dE}{dY}
\]

Calculating dE/dX from dE/dY

```c
void convLayer_backward_dgrad(int B, int M, int C, int H, int W, int K, float *dE_dY, float *W, float *dE_dX) {
    int H_out = H - K + 1;             // calculate H_out, W_out
    int W_out = W - K + 1;
    for (int b = 0; b < B; ++b) {      // for each image
        for (int c = 0;  c < C; ++c)     // for each input channel
            for (int h = 0; h < H; ++h)  // for each input pixel (two loops)
                for (int w = 0; w < W; ++w)
                    dE_dX[b, c, h, w] = 0.0f;  // initialize to 0
        for (int m = 0;  m < M;  ++m)          // for each output feature map
            for (int h = 0; h < H_out; ++h)      // for each output value (two loops)
                for (int w = 0; w < W_out; ++w)
                    for (int c = 0;  c < C; ++c)     // for each input channel
                        for (int p = 0; p < K; p)      // for each element of KxK filter (two loops)
                            dE_dX[b, c, h + p, w + q] += dE_dY[b, m, h, w] * W[m, c, p, q];
    }
}
```

Calculating dE/dW

```c
void convLayer_backward_wgrad(int B, int M, int C, int H, int W, int K, float *dE_dY, float *X, float *dE_dW) {
    const int H_out = H - K + 1;             // calculate H_out, W_out
    const int W_out = W - K + 1;
    for (int b = 0; b < B; ++b) {            // for each image
        for(int m = 0; m < M; ++m)             // for each output feature map
            for(int c = 0; c < C; ++c)            // for each channel
                for(int p = 0; p < K; ++p)       // for each element of KxK filter (two loops)
                    for(int q = 0; q < K; ++q)
                        dE_dW[b, m, c, p, q] = 0.0f;   // initialize to 0
        for(int m = 0;  m < M;  ++m) // for each output feature map
            for(int h = 0; h < H_out; ++h) // for each output value (two loops)
                for(int w = 0; w < W_out; ++w)
                    for(int c = 0;  c < C; ++c) // for each channel
                        for(int p = 0; p < K; p) // for each element of KxK filter (two loops)
                            dE_dW[b, m, c, p, q] += X[b, c, h + p, w + q] * dE_dY[b, m, h, w];
    }
}
```