ECE408 Lecture 9b
Feed-Forward Networks and Gradient-Based Training
ECE408 / CS483 / CSE 408
Spring 2019
(by Carl Pearson)

Machine Learning
• An important way of building applications whose logic is not fully understood.
 – Use labeled data – data that come with the input values and their desired output values – to learn what the logic should be
 – Capture each labeled data item by adjusting the program logic
 – Learn by example!

Machine Learning Tasks (1)
• Classification
 – Which of k categories an input belongs to
 – Ex: object recognition
• Regression
 – Predict a numerical value given some input
 – Ex: predict tomorrow’s temperature
• Transcription
 – Unstructured data into textual form
 – Ex: optical character recognition

Machine Learning Tasks (2)
• Translation
 – Convert a sequence of symbols in one language to a sequence of symbols in another
• Structured Output
 – Convert an input to a vector with important relationships between elements
 – Ex: natural language sentence into a tree of grammatical structure
• Others
 – Anomaly detection, synthesis, sampling, imputation, denoising, density estimation
Why Machine Learning Now?

• GPU computing hardware and programming interfaces such as CUDA has enabled very fast research cycle of deep neural net training
• Computer Vision, Speech Recognition, Document Translation, Self Driving Cars, Data Science…
• Most involve logic that were previously not effectively constructed with imperative programming
• Using big labeled data to train and specialize DNN based classifiers
 – Deriving a large quantity of quality labeled data is a challenge

Classification

• Formally: a function that maps an input to \(k \) categories

 \[f: \mathbb{R}^n \rightarrow \{1, \ldots, k\}, \]

• Our formulation: a function \(f \) parameterized by \(\Theta \) that maps input vector \(x \) to numeric code

 \[y = f(x, \Theta) \]

• \(\Theta \) encapsulates the structure and weights in our network

Linear Classifier (Perceptron)

• Recall our formulation:

 \[y = f(x, \Theta) \]

 \[y = \text{sign}(W \cdot x + b) \quad \Theta = \{W, b\} \]

• Dot product:
• Scalar addition:

Multi-Layer Perceptron

• What if a linear classifier can’t learn a function?
Multi-Layer Perceptron

\[\text{AND} = \text{sign}(x[0] + x[1] - 1.5) \]
\[\text{OR} = \text{sign}(x[0] + x[1] - 0.5) \]
\[\text{XOR} = \text{sign}(2 \times \text{OR} - \text{AND} - 2) \]

Generalize to Fully-Connected Layer

Linear Classifier: Input vector \(x \times \) weight vector \(w \) to produce scalar output \(y \)

Fully-connected: Input vector \(x \times \) weight matrix \(w \) to produce vector output \(y \)

Multilayer Terminology

Weight matrices: Entry \(i,j \) is weight between \(i^{th} \) input and \(j^{th} \) output

Input Layer

Hidden Layer(s)

“nodes”

Output Layer

\(\text{Argmax} \)

Probability that input is class \(k[i] \)
How to determine the weights?

- Fully connected layer with 784 inputs, 1024 outputs:
 - \([784 \times 1024]\) weight matrix
 - \([1024 \times 1]\) bias vector
- Look at observational data to determine the weights.
- With enough input data and corresponding desired outputs, we can model the relationship between inputs and outputs.

Forward and Backward Propagation

- Forward (inference)
 - Given parameters \(\Theta\) and input \(x\), produce label \(y\)
- Backward (training)
 - Given input data and target label \(t\), determine \(\Theta\)

Ingredients for Gradient-Based Supervised Training

- One labeled dataset (large)
 - Example: 60,000 28x28 grayscale images of handwritten numbers, each labeled
- One network architecture
 - Example: perceptron
 - \(y = W \cdot x + b\)
 - Recall: \(\Theta = \{W, b\}\)
- One error function
 - For target label \(t\), network output \(y\),
 - Example: \(E = \frac{1}{2} (y - t)^2\)
Stochastic Gradient Descent

- For each labeled image:
 - Read data to initialize input layer
 - Evaluate network to get y (forward)
 - Compare with target label t to get error E
 - Backpropagate error derivative to get parameter updates
 - Adjust parameters Θ in a direction that reduces total E over entire training set.

$\Theta_{i+1} = \Theta_i - \varepsilon \Delta \Theta$

Each gradient update happens from most accurate minima estimation.

Computing the Gradient Update

$$
\Theta_{i+1} = \Theta_i - \varepsilon \Delta \Theta \quad W_{i+1} = W_i - \varepsilon AW
$$

- Parameter Update
- Network function
- Network weight gradient
- Error function
- Error function gradient
- Full weight update expression
- Full weight update term

Fully-Connected Gradient Detail

- i^{th} entry in f_{c1} = $\sum_j W_j[i,j]x_1[j]$
- i^{th} row in W_1
- j^{th} entry in x_1

- Computed from previous layer

- Need input (from forward pass)
Batched Stochastic Gradient Descent

- **A training epoch** (a pass through whole training set)
 - Set $\Delta \Theta = 0$
 - For each labeled image:
 - Read data to initialize input layer
 - Evaluate network to get y (forward)
 - Compare with target label t to get error E
 - Backpropagate error derivative to get parameter updates
 - Accumulate parameter updates into $\Delta \Theta$
 - $\Theta_{i+1} = \Theta_i - \varepsilon \Delta \Theta$

Aggregate gradient update most accurately reflects true gradient

Mini-batch Stochastic Gradient

- For each batch in training set
 - For each labeled image in batch:
 - Read data to initialize input layer
 - Evaluate network to get y (forward)
 - Compare with target label t to get error E
 - Backpropagate error derivative to get parameter updates
 - Accumulate parameter updates into $\Delta \Theta$
 - $\Theta_{i+1} = \Theta_i - \varepsilon \Delta \Theta$

Balance between accuracy of gradient estimation and parallelism

When is training done?

Split labeled data into **training** and **test** sets,

- Training data to compute parameter updates.
- Test data to check how model generalizes to new inputs (the ultimate goal!)
- The network can become too good at classifying training inputs!

How Complicated Should a Network Be?

Intuition: like a polynomial fit. More higher-order terms make a better fit, but add huge unpredictable swings as input changes.

If network is too good at training data, new inputs cause big unpredictable output changes.
No Free Lunch Theorem

• Every classification algorithm has the same error rate when classifying previously unobserved inputs when averaged over all possible input-generating distributions.

• Even neural networks must be tuned for specific tasks

Summary (1)

• Classification:
 \[f : \mathbb{R}^n \rightarrow \{1, \ldots, k\}, \]
 \[y = f(x, \theta) \]

• Current ML work driven by cheap compute, lots of available data

• Perceptron as a trivial deep network
 \[y = \text{sign}(W \cdot x + b) \]

• Forward for inference, backward for training

Summary (2)

• Chain rule to compute parameter updates

• Stochastic gradient descent for training