Objective

- To learn to assess the benefit of tiling
- To learn to handle boundary conditions in tiled algorithms

Tiled Matrix Multiplication Kernel

```c
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)
{
    __shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];
    __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];
    int bx = blockIdx.x;  int by = blockIdx.y;
    int tx = threadIdx.x; int ty = threadIdx.y;
    int Row = by * TILE_WIDTH + ty;
    int Col = bx * TILE_WIDTH + tx;
    float Pvalue = 0;
    for (int m = 0; m < Width/TILE_WIDTH; ++m) {
        subTileM[ty][tx] = M[Row*Width + m*TILE_WIDTH+tx];
        subTileN[ty][tx] = N[(m*TILE_WIDTH+ty)*Width+Col];
        __syncthreads();
        for (int k = 0; k < TILE_WIDTH; ++k)
            Pvalue += subTileM[ty][k] * subTileN[k][tx];
        __syncthreads();
        P[Row*Width+Col] = Pvalue;
    }
}
```

Shared Memory and Threading

- Each SM in Maxwell has 64KB shared memory (48KB max per block)
 - Shared memory size is implementation dependent!
 - For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
 - Shared memory can potentially support up to 32 active blocks
 - The threads per SM constraint (2,048) will limit the number of blocks to 8
 - This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)
 - The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory usage per thread block,
 - Shared memory can potentially support up to 8 active blocks
 - The threads per SM constraint (2,048) will limit the number of blocks to 2
 - This allows up to 2*2,048 = 4,096 pending loads (2 per thread, 1024 threads per block)
Memory Bandwidth Consumption

• Using 16x16 tiling, we reduce the global memory by a factor of 16
 – Each operand is now used by 16 floating-point operations
 – The 150GB/s bandwidth can now support \((150/4)\times 16 = 600\) GFLOPS!

• Using 32x32 tiling, we reduce the global memory accesses by a factor of 32
 – Each operand is now used by 32 floating-point operations
 – The 150 GB/s bandwidth can now support \((150/4)\times 32 = 1,200\) GFLOPS!
 – The memory bandwidth is no longer a limiting factor for performance!

Device Query

• Number of devices in the system
  ```c
  int dev_count;
  cudaGetDeviceCount( &dev_count);
  ```

• Capability of devices
  ```c
  cudaDeviceProp dev_prop;
  for (i = 0; i < dev_count; i++) {
    cudaGetDeviceProperties( &dev_prop, i);
    // decide if device has sufficient resources and capabilities
  }
  ```
 – dev_prop.dev_prop.maxThreadsPerBlock
 – dev_prop.dev_prop.sharedMemoryPerBlock

Handling Matrix of Arbitrary Size

• The tiled matrix multiplication kernel in Lecture 5 can handle only the matrices whose dimensions are multiples of the tile dimensions
 – However, a real application needs to handle arbitrary sized matrices.
 – Could pad (add elements to) the rows and columns into multiples of block size, but will have significant space and data transfer time overhead.

• We will take a different approach.
Review: Phase 1 Use for Block (0,0)

None of the threads should take effect in this step

Phase 0 Load for Block (1,1)

Threads (0,1) and (1,1) need special treatment

threads (1,0) and (1,1) need special treatment

Phase 0 Use for Block (1,1)

None of the threads should take effect in this step
Major Cases in Toy Example

- Threads that calculate valid P elements but can step outside valid input
 - Phase 1 of Block(0,0), 2nd step, all threads
- Threads that do not calculate valid P elements
 - Block(1,1), Thread(1,0), non-existent row
 - Block(1,1), Thread(0,1), non-existing column
 - Block(1,1), Thread(1,1), non-existing row/column

A “Simple” Solution

- Test if a thread is to load any input element outside the valid range
 - If valid, proceed to load
 - Else, do not load, just write a 0
- Rationale: a 0 value will ensure that the multiply-add step does not affect the final value of the output element

Phase 1 Use for Block (0,0)

- The multiply-add will not affect the output due to 0
A “Simple” Solution (Cont.)

- If a thread does not calculate a valid P element
 - Can still perform multiply-add into its register
 - As long as it is not allowed to write to the global memory at the end of the kernel

Loading Elements – Before and After

```c
8   for (int m = 0; m < (Width - 1)/TILE_WIDTH + 1; ++m)
9      Mds[ty][tx] = M[Row*Width + m*TILE_WIDTH + tx];
10     Nds[ty][tx] = N[(m*TILE_WIDTH + ty)*Width + Col];
11     __syncthreads();
```

Inner Product – Before and After

```c
12       for (int k = 0; k < TILE_WIDTH; ++k) {
13               Pvalue += Mds[ty][k] * Nds[k][tx];
14          } __syncthreads();
15      P[Row*Width + Col] = Pvalue;
```

Phase 1 Use for Block (1,1)
Some Important Points

• For each thread the conditions are different for
 – Loading M element
 – Loading N element
 – Calculation/storing output elements
• The effect of control divergence should be small for large matrices
• How about rectangular matrices?

ANY MORE QUESTIONS?
READ CHAPTER 4!