Objective

- To master parallel Scan (Prefix Sum) algorithms
 - frequently used for parallel work assignment and resource allocation
 - A key primitive used in many parallel algorithms to convert serial computation into parallel computation
 - Based on reduction tree and reverse reduction tree
- To learn the concept of double buffering

(Inclusive) Scan (Prefix-Sum) Definition

Definition: The scan operation takes a binary associative operator \oplus, and an array of n elements $[x_0, x_1, ..., x_{n-1}]$, and returns the prefix-sum array $[x_0, (x_0 \oplus x_1), ..., (x_0 \oplus x_1 \oplus ... \oplus x_{n-1})]$.

Example: If \oplus is addition, then the scan operation on the array $[3, 1, 7, 0, 4, 1, 6, 3]$ would return $[3, 4, 11, 11, 15, 16, 22, 25]$.

A Inclusive Scan Application Example

- Assume that we have a 100-inch bread to feed 10
- We know how much each person wants in inches
 - $[3, 5, 2, 7, 28, 4, 3, 0, 8, 1]$
- How do we cut the bread quickly?
- How much will be left
- Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2 inches third, etc.
- Method 2: calculate prefix-sum array
 - $[3, 8, 10, 17, 45, 49, 52, 52, 60, 61]$ (39 inches left)
Typical Applications of Scan

- Scan is a simple and useful parallel building block
 - Convert recurrences from sequential:

    ```
    for(j=1; j<n; j++) out[j] = out[j-1] + f(j);
    ```
 - into parallel:

    ```
    forall(j) { temp[j] = f(j) }
    scan(out, temp);
    ```
- Useful for many parallel algorithms:
 - radix sort
 - quicksort
 - String comparison
 - Lexical analysis
 - Stream compaction
 - Polynomial evaluation
 - Solving recurrences
 - Tree operations
 - Histograms
 - Etc.

Other Applications

- Assigning camp slots
- Assigning farmer market space
- Allocating memory to parallel threads
- Allocating memory buffer to communication channels
- ...

An Inclusive Sequential Scan

Given a sequence \([x_0, x_1, x_2, ...]\)
Calculate output \([y_0, y_1, y_2, ...]\)
Such that:

\[
\begin{align*}
y_0 &= x_0 \\
y_1 &= x_0 + x_1 \\
y_2 &= x_0 + x_1 + x_2 \\
&\text{...}
\end{align*}
\]

Using a recursive definition:

\[
y_i = y_{i-1} + x_i
\]

An Sequential C Implementation

```c
y[0] = x[0];
for (i = 1; i < Max_i; i++) y[i] = y[i-1] + x[i];
```

Computationally efficient:

N additions needed for N elements - O(N)!
A Naïve Inclusive Parallel Scan

- Assign one thread to calculate each y element
- Have every thread to add up all x elements needed for the y element

\[
\begin{align*}
y_0 &= x_0 \\
y_1 &= x_0 + x_1 \\
y_2 &= x_0 + x_1 + x_2
\end{align*}
\]

“Parallel programming is easy as long as you do not care about performance.”

Parallel Inclusive Scan using Reduction Trees

- Calculate each output element as the reduction of all previous elements
 - Some reduction partial sums will be shared among the calculation of output elements
 - Based on hardware added design by Peter Kogge and Harold Stone at IBM in the 1970s – Kogge-Stone Trees
 - Goal – achieve short latency

A Kogge-Stone Parallel Scan Algorithm

1. Load input from global memory into shared memory array \(T \)

Each thread loads one value from the input (global memory) array into shared memory array \(T \).

A Kogge-Stone Parallel Scan Algorithm

1. (previous slide)
2. Assuming \(n \) is a power of 2. Iterate \(\log(n) \) times, stride from 1 to \(n/2 \). Threads stride to \(n-1 \) active:
 add pairs of elements that are stride elements apart.

- Active threads: stride to \(n-1 \) (\(n - \text{stride} \) active threads)
- Thread \(j \) adds elements \(T[j] \) and \(T[j-\text{stride}] \) and writes result into element \(T[j] \)
- Each iteration requires two syncthreads
 - make sure that input is in place
 - make sure that all input elements have been used
A Kogge-Stone Parallel Scan Algorithm

1. (previous slide)

2. Assuming \(n \) is a power of 2. Iterate \(\log(n) \) times, stride from 1 to \(n/2 \). Threads stride to \(n-1 \) active: add pairs of elements that are stride elements apart.

- Active threads: stride to \(n-1 \) (\(n - \text{stride} \) active threads)
- Each iteration requires two syncthreads
 - \(\text{syncthreads}(); \) // make sure that input is in place
 - \(\text{float temp} = T[j] + T[j-\text{stride}]; \)
 - \(\text{syncthreads}(); \) // make sure that previous output has been consumed
- \(T[j] = \text{temp}; \)

Iteration #1
Stride = 1

\[
T = [3, 1, 7, 0, 4, 1, 6, 3]
\]

Iteration #2
Stride = 2

\[
T = [3, 4, 8, 7, 4, 5, 7, 9]
\]

Iteration #3
Stride = 4

\[
T = [3, 4, 11, 11, 12, 12, 11, 14]
\]

3. Write output from shared memory to device memory

Sharing Computation in Kogge-Stone

Iteration #1
Stride = 1

\[
T = [3, 1, 7, 0, 4, 1, 6, 3]
\]

Iteration #2
Stride = 2

\[
T = [3, 4, 8, 7, 4, 5, 7, 9]
\]

Iteration #3
Stride = 4

\[
T = [3, 4, 11, 11, 15, 16, 22, 25]
\]
Double Buffering

• Use two copies of data T0 and T1
• Start by using T0 as input and T1 as output
• Switch input/output roles after each iteration
 – Iteration 0: T0 as input and T1 as output
 – Iteration 1: T1 as input and T0 and output
 – Iteration 2: T0 as input and T1 as output
• This is typically implemented with two pointers, source and destination that swap their contents from one iteration to the next
• This eliminates the need for the second __syncthreads() call

A Double-Buffered Kogge-Stone Parallel Scan Algorithm

• Each iteration requires only one syncthreads()
• syncthreads(); // make sure that input is in place
• float destination[i] = source[i] + source[i-stride];
• temp = destination; destination = source; source = temp;
• After the loop, write destination contents to global memory

A Kogge-Stone Parallel Scan Algorithm

• source = &T0[0]; destination = &T1[0];
• Each iteration requires only one syncthreads()
• syncthreads(); // make sure that input is in place
• float destination[i] = source[i] + source[i-stride];
• temp = destination; destination = source; source = temp;
• After the loop, write destination contents to global memory
Work Efficiency Analysis

• A Kogge-Stone scan kernel executes $\log(n)$ parallel iterations
 – The steps do $(n-1), (n-2), (n-4), \ldots, (n-n/2)$ add operations each
 – Total # of add operations: $n \times \log(n) - (n-1) \rightarrow O(n \log(n))$ work

• This scan algorithm is not very work efficient
 – Sequential scan algorithm does n adds
 – A factor of $\log(n)$ hurts: 20x for 1,000,000 elements!
 – Typically used within each block, where $n \leq 1,024$

• A parallel algorithm can be slow when execution resources are saturated due to low work efficiency