Convolutional Neural Networks

Objective
- To learn to implement the different types of layers in a Convolutional Neural Network (CNN)

LeNet-5: CNN for hand-written digit recognition

Anatomy of a Convolution Layer
- Input features/channels
 - A inputs \((N_1 \times N_2)\)

- Convolution Layer
 - \(A \times B\) convolution kernels \((K_1 \times K_2)\)

- Output Features/Channels
 - \(B\) outputs
 - \((N_1 - K_1/2) \times (N_2 - K_2/2)\)
2-D Pooling (Subsampling)

- A subsampling layer
 - Sometimes with bias and non-linearity built in
- Common types: max, average, L^2 norm, weighted average
- Helps make representation invariant to size scaling and small translations in the input

Why Convolution (1)

- Sparse interactions
 - Meaningful features (classification) in small spatial regions
 - Need fewer parameters (less storage, better statistical characteristics, faster training)
 - Need multiple layers for wide receptive field

Why Convolution (2)

- Parameter sharing
 - Kernel is reused when computing layer output
- Equivariant Representations
 - If input is translated, output is translated the same way
 - Map of where features appear in input

Convolution

- 2-D Matrix
- $Y = W \otimes X$
- Kernel smaller than input: smaller receptive field
- Fewer Weights

MLP

- Vector
- $Y = w x + b$
- Maximum receptive field
- More weights
Forward Propagation

- **Convolutional Layer**
 - **Input Features** X
 - **Weights** W
 - **Output Features** Y

Example of the Forward Path of a Convolution Layer

Sequential Code: Forward Convolutional Layer

```c
void convLayer_forward(int B, int M, int C, int H, int W, int K, float* X, float* W, float* Y) {
    int H_out = H - K + 1;
    int W_out = W - K + 1;
    for(int b = 0; b < B; ++b) // for each image in batch
        for(int m = 0; m < M; m++) // for each output feature map
            for(int h = 0; h < H_out; h++) // for each output element
                for(int w = 0; w < W_out; w++) {
                    Y[b, m, h, w] = 0;
                    for(int c = 0; c < C; c++) // sum over all input feature maps (channels)
                        for(int p = 0; p < K; p++) // KxK filter
                            for(int q = 0; q < K; q++)
                                Y[b, m, h, w] += X[b, c, h + p, w + q] * W[m, c, p, q];
                }
}
```

A Small Convolution Layer Example

<table>
<thead>
<tr>
<th>$X[b, 1, _, _]$</th>
<th>$W[0, 0, _, _]$</th>
<th>$Y[b, 0, _, _]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 0 1</td>
<td>1 1 3 2</td>
<td>1 1 3 1</td>
</tr>
<tr>
<td>2 2 1 0</td>
<td>0 2 2 0</td>
<td>2 1 0</td>
</tr>
<tr>
<td></td>
<td>2 1 0 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$X[b, 2, _, _]$</th>
<th>$W[0, 1, _, _]$</th>
<th>$Y[b, 0, _, _]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 1 0</td>
<td>0 1 2 0</td>
<td>0 1</td>
</tr>
<tr>
<td>1 1 2 3</td>
<td>1 1 0 2</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td>3 0 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$X[b, 3, _, _]$</th>
<th>$W[0, 2, _, _]$</th>
<th>$Y[b, 0, _, _]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 1 0</td>
<td>0 1 3 2</td>
<td>0 1</td>
</tr>
<tr>
<td>0 1 2 0</td>
<td>1 0 2</td>
<td>1 0</td>
</tr>
<tr>
<td></td>
<td>1 2 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$Y[0, _, _]$</th>
<th>output map</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td></td>
</tr>
<tr>
<td>1 1 0</td>
<td></td>
</tr>
<tr>
<td>3 3 2 0</td>
<td></td>
</tr>
<tr>
<td>1 3 2 0</td>
<td></td>
</tr>
</tbody>
</table>
A Small Convolution Layer Example

\[c = 0 \]

\[
\begin{array}{cccc}
1 & 2 & 0 & 1 \\
1 & 1 & 3 & 2 \\
0 & 2 & 2 & 0 \\
2 & 1 & 0 & 3 \\
\end{array}
\begin{array}{cccc}
1 & 1 & 1 \\
2 & 2 & 3 \\
2 & 1 & 0 & 3 \\
\end{array}
\]

\[X[b,0,:,:] \]

\[W[0,:,:] \]

\[Y[b,0,:,:] \]

\[3+13+2 \]

\[18 \]

\[? \]

\[7+3+3 \]

\[31 \]

\[? \]

\[Parallelism in a Convolution Layer \]

- All output feature maps can be calculated in parallel
 - Usually a small number, not sufficient to fully utilize a GPU
- All output feature map pixels can be calculated in parallel
 - All rows can be done in parallel
 - All pixels in each row can be done in parallel
 - Large number but diminishes as we go into deeper layers
- All input feature maps can be processed in parallel, but will need atomic operation or tree reduction
Design of a Basic Kernel

- Each block computes a tile of output pixels
 - TILE_WIDTH pixels in each dimension
- The x dimension in the grid maps to the M output feature maps
- The y dimension in the grid maps to the tiles in the output feature maps (linearization)

A Small Example

- Assume 4 output feature maps (M = 4)
 - Each output feature map is 8x8 image (W_out = H_out = 8)
 - We have 4 blocks in the x dimension
- If we use tiles of 4 pixels on each side (TILE_SIZE = 4)
 - We have 4 blocks in the x dimension
 - Top two blocks in each column calculates the top row of tiles in the corresponding output feature map
 - Bottom two block in each column calculates the bottom row of tiles in the corresponding output feature map

Host Code for a Basic Kernel: CUDA Grid

W_out and H_out are the output feature map width and height

```c
# define TILE_WIDTH 16 // We will use 4 for small examples.
W_grid = W_out/TILE_WIDTH; // number of horizontal tiles per output map
H_grid = H_out/TILE_WIDTH; // number of vertical tiles per output map
Y = H_grid * W_grid;
dim3 blockDim(TILE_WIDTH, TILE_WIDTH, 1);
dim3 gridDim(M, Y, 1);
ConvLayerForward_Kernel<<< gridDim, blockDim>>>(…);
```

A Basic Conv. Layer Forward Kernel (Code is Incomplete!)

```c
__global__ void ConvLayerForward_Basic_Kernel(int C, int W_grid, int K,
float* X, float* W, float* Y)
{
int m = blockIdx.x;
int h = blockIdx.y / W_grid + threadIdx.y;
int w = blockIdx.y % W_grid + threadIdx.x;
float acc = 0.;
for (int c = 0; c < C; c++) { // sum over all input channels
    for (int p = 0; p < K; p++) // loop over KxK filter
        for (int q = 0; q < K; q++)
            acc += X[c, h + p, w + q] * W[m, c, p, q];
}
Y[m, h, w] = acc;
}```
Some Observations

- The amount of parallelism is quite high as long as the total number of pixels across all output feature maps is large
  - This matches the CNN architecture well
- Each input tile is loaded multiple times, once for each block that calculates the output tile that requires the input tile
  - Not very efficient in global memory bandwidth

Sequential Code: Forward Pooling Layer

```c
void poolingLayer_forward(int B, int M, int H, int W, int K, float* Y, float* S) {
 for (int b = 0; b < B; ++b) // for each image in the batch
 for (int m = 0; m < M; ++m) // for each output feature map
 for (int h = 0; h < H/K; ++h) // for each output element
 for (int w = 0; w < W/K; ++w) {
 S[m, h, w] = 0.;
 for (int p = 0; p < K; ++p)
 for (int q = 0; q < K; ++q)
 S[m, h, w] += Y[b, m, K*h + p, K*w + q] / (K*K);
 S[m, h, w] = sigmoid(S[m, h, w] + b[m]) // bias, non-linearity
 }
}
```

Kernel Implementation of Subsampling Layers

- Straight forward mapping from grid to subsampled output feature map pixels
  - Need to manipulate index mapping for accessing the output feature map pixels of the previous convolution layer
- It is often merged into the previous convolution layer to save memory bandwidth

Optimizing Convolution Layers
Implementing a Convolution Layer with Matrix Multiplication

Simple Matrix Multiplication

Each product matrix element is an output feature map pixel.

This inner product generates element 0 of output feature map 0.

Tiled Matrix Multiplication 2x2 Example

Each block calculates one output tile – 2 elements from each output map

Each input element is reused 2 times in the shared memory

Tiled Matrix Multiplication 2x4 Example

Each block calculates one output tile – 4 elements from each output map

Each input element is reused 2 times in the shared memory
Efficiency Analysis: Total Input Replication

- Replicated input features are shared among output maps
  - There are $H_{\text{out}} \times W_{\text{out}}$ output feature map elements
  - Each requires $K \times K$ elements from the input feature maps
  - So, the total number of input element after replication is $H_{\text{out}} \times W_{\text{out}} \times K \times K$ times for each input feature map
  - The total number of elements in each original input feature map is $(H_{\text{out}}+K-1) \times (W_{\text{out}}+K-1)$

Analysis of a Small Example

$H_{\text{out}} = 2$
$W_{\text{out}} = 2$
$K = 2$

There are 3 input maps (channels)
The total number of input elements in the replicated ("unrolled") input matrix is $3 \times 2 \times 2 \times 2 \times 2$
The replicating factor is $rac{(3 \times 2 \times 2 \times 2 \times 2) \times (3 \times 3 \times 3)}{3 \times 2 \times 2 \times 2 \times 2} = 1.78$

Memory Access Efficiency of Original Convolution Algorithm

- Assume that we use tiled 2D convolution
- For input elements
  - Each output tile has $\text{TILE \_WIDTH}$ elements
  - Each input tile has $(\text{TILE \_WIDTH}+K-1)^2$
  - The total number of input feature map element accesses was $\text{TILE \_WIDTH} \times (\text{TILE \_WIDTH}+K-1)^2$
  - The reduction factor of the tiled algorithm is $K \times \text{TILE \_WIDTH} \times (\text{TILE \_WIDTH}+K-1)^2$
- The convolution filter weight elements are reused within each output tile

Properties of the Unrolled Matrix

- Each unrolled column correspond to an output feature map element
- For an output feature element $(h,w)$, the index for the unrolled column is $h \times W_{\text{out}} + w$ (linearized index of the output feature map element)
Properties of the Unrolled Matrix (cont.)

- Each section of the unrolled column correspond to an input feature map
- Each section of the unrolled column has k*k elements (convolution mask size)
- For an input feature map c, the vertical index of its section in the unrolled column is c*k*k(linearized index of the output feature map element)

Input to Unrolled Matrix Mapping

- Output element (h, w)
- Mask element (p, q)
- Input feature map c

// calculate the horizontal matrix index
int w_unroll = h * W_out + w;

// find the beginning of the unrolled
int w_base = c * (K*K);

// calculate the vertical matrix index
int h_unroll = w_base + p * K + q;

X_unroll[b, h_unroll, w_unroll] = X[b, c, h + p, w + q];

Function to generate “unrolled” X

void unroll(int B, int C, int H, int W, int K, float *X, float *X_unroll) {
    int H_out = H – K + 1;
    int W_out = W – K + 1;
    for (int c = 0; c < C; ++c) { // for each input channel
        int w_base = c * (K*K); // find the beginning of the unrolled section
        for (int q = 0; q < K; ++q) { // loop over all positions of convolution mask
            int w_unroll = w_base + p * K + q; // calculate the vertical matrix index
            X_unroll[b, h_unroll, w_unroll] = X[b, c, h + p, w + q];
        }
    }
}

To Find the Input Elements

- For output element (h,w), the base index for the upper left corner of the input feature map c is (c, h, w)
- The input element index for multiplication with the convolution mask element (p, q) is (c, h+p, w+q)
Implementation Strategies for a Convolution Layer

- **Baseline**
  - Tiled 2D convolution implementation, use constant memory for convolution masks

- **Matrix-Multiplication Baseline**
  - Input feature map unrolling kernel, constant memory for convolution masks as an optimization
  - Tiled matrix multiplication kernel

- **Matrix-Multiplication with built-in unrolling**
  - Perform unrolling only when loading a tile for matrix multiplication
  - The unrolled matrix is only conceptual
  - When loading a tile element of the conceptual unrolled matrix into the shared memory, use the properties in the lecture to load from the input feature map

- **More advanced Matrix-Multiplication**
  - Use joint register-shared memory tiling

Enjoy the project!