
4/9/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Pyramid Tree I/O Example

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Use Pyramid Trees to Write Output and Input Examples

Let’s do an I/O example using pyramid trees.

Here’s what we’ll do:
◦write a tree as ASCII
◦write a tree as binary
◦ compare the two files, and
◦ rebuild a tree from the binary file.

Then, as a think-pair-share, you can
rebuild a tree from the ASCII file.

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

x and y splitters
(internal nodes)

or position
(leaf nodes)

graph vertex
array index
(leaf nodes)

Pyramid Tree Nodes Consist of Four Fields

Recall the pyramid tree node structure:

struct pyr_node_t {
int32_t x;
int32_t y_left;
int32_t y_right;
int32_t id;

};

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

number of nodes
in pyramid tree

array of nodes

Pyramid Tree is a Number and an Array of Nodes

And the pyramid tree:

struct pyr_tree_t {
int32_t n_nodes;
pyr_node_t* node;

};

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

4/9/2018

2

Write the Number of Nodes First in the File

How should we write the pyramid tree?

Start by writing the number of nodes.

Why?

When we read the tree,
◦we need to dynamically allocate
◦ the array of nodes.
◦But, to do so, we need to know the size.

Write the size first to make that task easier.

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

the tree

the file name

1 on success, 0 on failure

Given Tree and File Name, Try to Write ASCII File

Let’s start the code:
int32_t write_pyr_tree_ASCII

(pyr_tree_t* p, const char* fname)
{

FILE* out;
if (NULL == (out =

fopen (fname, "w"))) {
return 0;

}
fprintf (out, "%d\n", p->n_nodes);

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Open file
for writing.

new stream

Print number of nodes to stream.

Failed?
Give up.

Open the File and Write the Number of Nodes

Let’s start the code:
int32_t write_pyr_tree_ASCII

(pyr_tree_t* p, const char* fname)
{

FILE* out;
if (NULL == (out =

fopen (fname, "w"))) {
return 0;

}
fprintf (out, "%d\n", p->n_nodes);

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Write Contents of Nodes Distinctly for Internal/Leaf

What about the nodes?
For internal nodes, the id field means nothing.
So we can write a node’s contents as follows:

<x> <y_left> <y_right>

For leaf nodes,
◦ all fields are meaningful,
◦ but, if we have the graph,
◦ we can find x and y position using id.

So, for each leaf node, we can write:
<id>

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

4/9/2018

3

Use Equation for Identifying Leaf Nodes to Find the First

What’s the index of the first leaf node?

Remember that
◦node N is a leaf node iff

4N + 1 ≥ n_nodes, so

4N ≥ n_nodes – 1

Dividing by 4, we obtain

𝐍 ≥
𝐧_𝐧𝐨𝐝𝐞𝐬 − 𝟏

𝟒

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Calculate the Index of the First Leaf Node L

 𝐍 ≥ 𝐧_𝐧𝐨𝐝𝐞𝐬 𝟏

𝟒

The smallest such N is the first leaf node, L.

Since L is an integer, we round up,
◦but integer arithmetic in C
rounds toward zero,

◦ so we obtain:

 𝐋 =
𝐧_𝐧𝐨𝐝𝐞𝐬 𝟏

𝟒
 =

𝐧_𝐧𝐨𝐝𝐞𝐬 𝟏 𝟑

𝟒
=

𝐧_𝐧𝐨𝐝𝐞𝐬 𝟐

𝟒
.

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

Calculate first
leaf node’s index.

Back to the Code: Calculate the First Leaf’s Index

int32_t first_leaf;
int32_t i;

first_leaf = (p->n_nodes + 2) / 4;
for (i = 0; first_leaf > i; i++) {

fprintf (out, "%d %d %d\n",
p->node[i].x,
p->node[i].y_left,
p->node[i].y_right);

}

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

Loop over all
internal nodes.

Print x and y
splitters.

Loop Over All Internal Nodes and Print Each

int32_t first_leaf;
int32_t i;

first_leaf = (p->n_nodes + 2) / 4;
for (i = 0; first_leaf > i; i++) {

fprintf (out, "%d %d %d\n",
p->node[i].x,
p->node[i].y_left,
p->node[i].y_right);

}

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

4/9/2018

4

Loop over all leaf nodes.

Print id
field.

Close file and return 0 or 1.

Loop Over All Leaf Nodes and Print id Field

// After last loop, i is first_leaf.

for (; p->n_nodes > i; i++) {

fprintf (out, "%d\n",

p->node[i].id);

}

return (0 == fclose (out));

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

In Binary Version, First Open the File as a Stream

What about the binary version?
int32_t write_pyr_tree_binary

(pyr_tree_t* p, const char* fname)
{

FILE* out;
if (NULL == (out =

fopen (fname, "w"))) {
return 0;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

First part is identical
to the ASCII version.

Write n_nodes to output file.

Write node array to output file.

Write Number of Nodes Followed by Node Array

int32_t rval =
(1 == fwrite (&p->n_nodes,
sizeof (p->n_nodes), 1, out) &&
p->n_nodes == fwrite
(p->node, sizeof (p->node[0]),
p->n_nodes, out));

fclose (out);
return rval;

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

Return success if
both writes succeed.

Close the output stream.

Return success or failure.

Close Output Stream and Return Success or Failure

int32_t rval =
(1 == fwrite (&p->n_nodes,
sizeof (p->n_nodes), 1, out) &&
p->n_nodes == fwrite
(p->node, sizeof (p->node[0]),
p->n_nodes, out));

fclose (out);
return rval;

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

4/9/2018

5

Use a Small Graph as an Example

Here’s a small
graph with
5 vertices and
no edges.

The pyramid tree
has 7 nodes.

L = 𝟕 𝟐

𝟒
= 2.

© 2018 Steven S. Lumetta. All rights reserved. slide 17

Look at the Output for a Small Graph

The ASCII file for
the pyramid tree is:

© 2018 Steven S. Lumetta. All rights reserved. slide 18

7
1 1 0
-1 -2 1
2
0
3
1
4

total:
26 bytes

Look at the Output for a Small Graph

The ASCII file for
the pyramid tree is:

© 2018 Steven S. Lumetta. All rights reserved. slide 19

7
1 1 0
-1 -2 1
2
0
3
1
4

total:
26 bytes

The binary file for
the pyramid tree is:
◦4B for n_nodes
◦16B per node
◦7 nodes

total:
116 bytes

Could have done
the same with
the binary file.

ASCII is Smaller Because We Left Out Unnecessary Bits

The results are similar for the graph of the streets
in the Champaign-Urbana area:
◦ 570,555B for ASCII, and
◦ 942,164B for binary.

Why is the binary file larger?

We saved a lot of space by not writing everything.
◦ If we had written all four fields
◦ for all nodes in ASCII,
◦ the result is over 1.5MB.

And most numbers are small.

© 2018 Steven S. Lumetta. All rights reserved. slide 20

4/9/2018

6

Returns new tree or NULL.

file name

input stream

new pyramid tree

number of nodes in file

Read and Build a Pyramid Tree from a File

Now, let’s reconstruct a pyramid tree
from a binary file.
pyr_tree_t* read_pyr_tree_binary

(const char* fname)
{

FILE* in;
pyr_tree_t* p;
int32_t count;

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

If file open succeeds, read
number of nodes in file.

Open file
for reading.

Open File for Reading, Then Read Number of Nodes

if (NULL == (in =
fopen (fname, "r")) ||

1 != fread (&count,
sizeof (count), 1, in)) {

if (NULL != in) {
fclose (in);

}
return 0;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

If either fails, try to
close stream, then

return failure.

On Failure, Try to Close Stream, Then Return Failure

if (NULL == (in =
fopen (fname, "r")) ||

1 != fread (&count,
sizeof (count), 1, in)) {

if (NULL != in) {
fclose (in);

}
return 0;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

Allocate space for pyramid tree.

Allocate space for
node array.

Allocate Space for Pyramid Tree and Node Array

if (NULL ==
(p = malloc (sizeof (*p))) ||
NULL == (p->node = malloc
(count * sizeof (p->node[0])))) {
if (NULL != p) { free (p); }
fclose (in);
return NULL;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

4/9/2018

7

If either fails, try to free tree,
close stream, then return failure.

On Failure, Free Tree and Close Stream, Then Return

if (NULL ==
(p = malloc (sizeof (*p))) ||
NULL == (p->node = malloc
(count * sizeof (p->node[0])))) {
if (NULL != p) { free (p); }
fclose (in);
return NULL;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

If node array read fails, free tree,
close stream, and return failure.

Read node
array from

stream.

Write number of nodes into pyramid tree.

Read Node Array from Input Stream

p->n_nodes = count;
if (p->n_nodes != fread

(p->node, sizeof (p->node[0]),
p->n_nodes, in)) {

free_pyramid_tree (p);
fclose (in);
return NULL;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

Close the input stream

Discard the return value (explicit).

Return the new pyramid tree.

Clean Up and Return the New Pyramid Tree

(void) fclose (in);

return p;

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

Time for Another Think-Pair-Share

As before, let’s do a group exercise in lecture.

The process:
1. I give you a problem.
2. You form groups of 3-4 people.
3. Talk about ways to solve the problem.
4. Once enough of the groups have finished,

one group volunteers to share their
answer.

5. We go over the group’s answer together.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

4/9/2018

8

Your Task: Rebuild a Pyramid Tree from an ASCII File

The task: read a file and build a pyramid tree
◦using information written into file earlier:
◦ internal nodes: x y_left y_right
◦ leaf nodes: id
pyr_tree_t* read_pyr_tree_ASCII

(const char* fname, graph_t* g);
Return a new tree on success,
or NULL on failure.

(Recall: use g->vertex[id].x and
g->vertex[id].y.)

slide 29ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved.

