
4/12/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

I/O in Unix and C

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

File Descriptors Used for All I/O in Unix and C

Unix (and C) supports
◦ a unified notion of I/O
◦ known as file descriptors.

Programs can use file descriptors to…
◦ read from the keyboard,
◦ write to the display (virtual or physical),
◦ read and write files,
◦ communicate with devices (such as printers),
◦ communicate over network connections, and
◦ communicate with other programs.

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Programs Can Be Oblivious to “Type” of File Descriptor

For the most part,
◦ programs do not need to know
◦ what “kind” of communication happens

with a file descriptor.

For example,
◦ most of the original Internet services
◦ were written and debugged

using keyboard and display
◦ then simply attached to Internet connections*
◦ without modifying the programs.

*inetd accepted the incoming network connections
and launched programs with a network connection

replacing the keyboard and display.

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

File Descriptors are Small Integers

How does it work?
Remember that access to any device is
usually a privileged operation.
OS maintains information
◦about each I/O channel.
◦For a given program,
◦ the information is kept in an array.

What’s a file descriptor?
An index into the array—a small integer.

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

4/12/2018

2

OS Implementation Has Evolved Over Time

Originally,
◦ the array of I/O channels in the OS
◦had fixed size.

Today, most OS’s grow the array
dynamically.

But the mechanism on the
user side (programs) is the same:
◦an I/O channel is a small integer
◦ called a file descriptor.

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Most I/O in C Uses Streams

In C,
◦most I/O uses an additional abstraction
◦built on top of file descriptors.

Streams provide
◦a continuous sequence of bytes
◦ typically including some kind of buffering.

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Buffering Happens for Both Reading and Writing

Buffering means
◦ waiting until a certain amount or type of
data is available before sending anything, or

◦ reading extra data in anticipation of
future requests for data.

For example,
◦ when you type at the keyboard
◦ data are not usually delivered to a program
◦ until you press <Enter>.
◦ That way, programs do not need
to implement <Backspace>.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

OS and Stream Both Buffer on Reads

Examples of buffering when reading…
Data on disk come in 4kB or 8kB blocks,
◦and access time can be ~10 msec,
◦ so the OS does not read 1B from a file
◦ even if your program requests 1B.

Similarly, making a system call
◦ is too expensive just to obtain 1B, so
◦ streams read more and buffer the rest
◦until your program asks for more.

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

4/12/2018

3

A C Stream is a FILE*

Where does buffering happen
with a stream in C?

In a data structure, of course!

A stream in C is
◦ a pointer to that structure,
◦ with type FILE* (all caps).

The structure itself is not usually used.*
*You can find it: compile with –E to get preprocessed source,
then go back to the header file to see the comments, but don’t

expect it to be easy to understand—it’s meant to be used
by most programmers, not modified.

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Three Streams by Default, but Can Create More

A C program has three default streams
corresponding to three default file descriptors:
◦stdin (descriptor 0) keyboard
◦stdout (descriptor 1) display (normal)
◦stderr (descriptor 2) display (error)

You can create other stream variables
by writing, for example:

FILE* my_file;

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

Descriptors Can Be Overridden When a Program Starts

Why are normal and error
output distinct?

Remember that
◦you can override each descriptor
separately, so, for example,

◦you can run a program and
◦ save its normal output to a file
◦but deliver error output to the display
◦ so that you notice the errors.

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

Open a File on Disk as a Stream Using fopen

What if a program wants to open a file?

Use this function:

FILE *fopen (const char* path,
const char* mode);

◦ path is the file name (starting from the
program’s current working directory).

◦ mode specifies whether the file is opened for
reading, writing, or both (see next slide).

◦ returns a new stream on success,
or NULL on failure.

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

4/12/2018

4

Mode is Passed as a String

What are the possible modes?
"r" or "rb"* read only
"w" or "wb" write only (after deleting)
"a" or "ab" append (write only, at end)
"r+"/"r+b"/"rb+" open r/w (read/write)
"w+"/"w+b"/"wb+" truncate, then r/w
"a+"/"a+b"/"ab+" append r/w

*The “b” is antiquated notation meaning “binary.” On
some systems, such as MS-DOS, files opened in non-binary

mode changed certain bytes (CR/LF) read/written to the file.

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

Close a Stream Using fclose

What about when one is done
with a stream?

Use this function:

int *fclose (FILE* stream);
◦stream is the stream to close.
◦returns 0 on success, or
EOF (-1) on failure.

Do NOT leave streams unclosed;
the number allowed for a program is finite!

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

Discuss Five Kinds of I/O

We’ll talk about five kinds of I/O:
1. one character at a time,
2. reading and writing strings,
3. formatted I/O,
4. binary I/O, and
5. formatted “I/O” to/from strings.

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

Use fgetc or getc to Read a Character from a Stream

Let’s start with one character at a time.
Remember that streams are buffered.
To read a character, use

int fgetc (FILE* stream);

int getc (FILE* stream);

fgetc is a library function.
getc is a preprocessor macro.

What’s the difference?

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

4/12/2018

5

Small and Slow, or Large and Fast?

The code for fgetc is in the C library, so
◦ your code calls it
◦ using one instruction per call
◦ but subroutine calls take time.

The code for getc is in a header file, so
◦ a copy is inlined every time your
code “calls” the function,

◦ making your code larger
◦ but probably faster.

On modern desktop/laptop/server platforms,
this choice matters less than on older machines.

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

Both fgetc and getc Return One Byte or EOF

int fgetc (FILE* stream);

int getc (FILE* stream);

Why return an integer instead of a byte?
What if something goes wrong?

What’s the 8-bit value that isn’t a byte?
There isn’t one.

EOF (the int -1) means failure.

0xFF is a byte.

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

Use fputc or putc to Write a Character to a Stream

Writing a character offers same two choices:
int fputc (int c, FILE* stream);

int putc (int c, FILE* stream);

fputc is a library function.
putc is a preprocessor macro.

Character to write passed as an int
(native integer) for speed.
Returns character written (zero-extended
from low 8 bits of c) or EOF on failure.

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

Use getchar/putchar as Shortcuts with stdin/stdout

There are also shortcuts

◦ for reading one character from stdin:

int getchar (void);

◦and for writing one character to stdout:

int putchar (int c);

© 2018 Steven S. Lumetta. All rights reserved. slide 20

4/12/2018

6

Use fgets to Read a String from a Stream

To read a string from a stream, use

char* fgets (char* s, int size,

FILE* stream);
◦s is an array of characters
into which the string is stored

◦size is the size of the array
◦stream is the stream from which to read
◦returns s or NULL on failure

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

fgets also Stops Reading at End of Line

When does fgets stop reading?

At the first of the following three
◦end of the input (such as a file)
◦end of a line (ASCII 0x0A or 0x0D)
◦end of array s (leaving room for a NUL).

End of line characters are stored in the array.

fgets is the best way
to process line-oriented inputs.

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

Use fputs to Write a String to a Stream

To write a string to a stream, use

int fputs (const char* s,
FILE *stream);

◦s is a string
◦stream is the stream to which to write
◦returns non-negative number or
EOF on failure

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

puts Writes to stdout with an End of Line Sequence

There is a shortcut for writing a
string to stdout:

int puts (const char* s);

puts adds an end of line sequence
◦ (linefeed, ASCII 0x0A, on Unix)
◦ to the end of the string (fputs does not).

Do not EVER use shortcut for reading a
string from stdin. It is a security hazard.

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

4/12/2018

7

Use scanf/printf for Formatted I/O with stdin/stdout

You already know the shortcut versions for
formatted I/O:
int scanf (const char* format, …);

reads formatted input from stdin.

int printf (const char* format, …);

writes formatted output to stdout.

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

Use fscanf to Read Formatted Input from a Stream

To read formatted input from a stream:

int fscanf (FILE* stream,
const char* format, ...);

◦stream is the stream from which to read
◦format is the format specifier
◦ remaining arguments are as with scanf
◦returns number of conversions or
-1 on failure

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

Use fprintf to Write Formatted Output to a Stream

To write formatted output to a stream:

int fprintf (FILE* stream,
const char* format, ...);

◦stream is the stream to which to write
◦format is the format specifier
◦ remaining arguments are as with printf
◦returns number of characters printed or
negative number on failure

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

Should Data be Stored in ASCII, or in Binary?

What’s better…

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

N_vertices=44164
START Vertex<0>
X=293540
Y=454970
Deg=2
Neighbor0=23
Neighbor1=44142
END Vertex<0>
…

data stored as ASCII

84 AC 00 00
A4 7A 04 00
3A F1 06 00
02 00 00 00
17 00 00 00
6E AC 00 00

data stored
as bits

OR

4/12/2018

8

Pros and Cons of Storing Binary Data

Advantages of storing/transmitting binary data
◦ avoid converting to/from ASCII, and
◦ use less space on disk.

Disadvantages of storing binary data
◦ not human-readable,
◦ not portable (endianness, floating-point
variations, and so forth),

◦ more difficult to manage upgrades.

Note: need to flatten data structures
regardless.

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

Use fread to Read Binary Input from a Stream

To read binary input from a stream:
size_t fread (void* ptr,

size_t size, size_t n_elt,
FILE* stream);

◦ptr is address to which data are stored
◦size is the size of one “thing”
◦n_elt is the number of “things”
◦stream is the stream from which to read
◦returns number of “things” read or
0 on failure (or 0 requested)

© 2018 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

Use fwrite to Write Binary Output to a Stream

To write binary output to a stream:

size_t fwrite (const void* ptr,
size_t size, size_t n_elt,
FILE* stream);

◦ ptr is address from which data are written
◦ size is the size of one “thing”
◦ n_elt is the number of “things”
◦ stream is the stream to which to write
◦ returns number of “things” written or
0 on failure (or 0 requested)

© 2018 Steven S. Lumetta. All rights reserved. slide 31ECE 220: Computer Systems & Programming

Use fgets & String “I/O” to Parse Human-Readable Files

Humans are error prone.

Writing error-handling and
variation-handling code
◦ for human-readable files
◦ is challenging with fscanf.

Instead, one can
◦ use fgets to read each line into a string, then
◦ use string “I/O” to parse the string.
◦ Failures can be re-parsed in different ways,
◦ and failed lines can be echoed to the human.

© 2018 Steven S. Lumetta. All rights reserved. slide 32ECE 220: Computer Systems & Programming

4/12/2018

9

Use sscanf to Read Formatted Input from a String

To read formatted input from a string:

int sscanf (const char* s,
const char* format, ...);

◦s is the string from which to read
◦format is the format specifier
◦ remaining arguments are as with scanf
◦returns number of conversions or
-1 on failure

© 2018 Steven S. Lumetta. All rights reserved. slide 33ECE 220: Computer Systems & Programming

Use snprintf to Write Formatted Output to a String

To write formatted output to a string:

int snprintf (char* s, size_t size,
const char* format, ...);

◦s is the array to which to write
◦size is the length of array s
◦format is the format specifier
◦ remaining arguments are as with printf
◦returns number of characters printed or
negative number on failure

© 2018 Steven S. Lumetta. All rights reserved. slide 34ECE 220: Computer Systems & Programming

Let’s Write a Variadic Logging Function

One last topic: how to write functions
◦with variable number of arguments
◦ (called variadic functions).

Say we want to write a logging function:
◦ log output goes to a specific log file,
◦ individual calls should look like printf
(flexible, formatted output).

© 2018 Steven S. Lumetta. All rights reserved. slide 35ECE 220: Computer Systems & Programming

Call Our Logging Function printlog

First,
◦ include C library header <stdarg.h>
◦which supports variadic functions.

Call our function printlog:

int printlog (const char* fmt, ...);

A user might then write, for example:

printlog ("Add %d,%d to get %d.\n",
a, b, sum);

© 2018 Steven S. Lumetta. All rights reserved. slide 36ECE 220: Computer Systems & Programming

4/12/2018

10

Use a File-Scope Variable for the Log’s Stream

Where is the stream for the log?

Let’s put all of the log functionality in a file.

The stream can be a file-scope variable:

FILE* logfile = NULL;

Let’s initialize the stream in the first
call to printlog.

We should have a function to close the stream,
too, but we won’t write that function.

© 2018 Steven S. Lumetta. All rights reserved. slide 37ECE 220: Computer Systems & Programming

Return negative value
to indicate failure.

Nowhere to write
if fopen fails.

Append to end
of existing file.

First call?

First Task: Open the Log File

Now we can start to write…
int printlog (const char* fmt, ...)
{
if (NULL == logfile) {
logfile = fopen ("the_log","a");
if (NULL == logfile) {

return -1;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 38ECE 220: Computer Systems & Programming

Are You Ready to Rewrite printf?

Now what?

Rewrite printf?

That part is left to you.

But there’s an easier way…

vfprintf

(The “v” is for variadic/variable arguments.)

© 2018 Steven S. Lumetta. All rights reserved. slide 39ECE 220: Computer Systems & Programming

Declare and Initialize a Variable Arguments List Variable

int printlog (const char* fmt, ...);

To use the arguments after fmt,
◦ we must declare and initialize
◦ a “variable argument list” variable.
◦ The type is va_list:

va_list args;
va_start (args, fmt);

va_start is a preprocessor macro that
starts the variable-length list after the
specified argument—in this case, fmt.

© 2018 Steven S. Lumetta. All rights reserved. slide 40ECE 220: Computer Systems & Programming

4/12/2018

11

Add the Variable Arguments List to Our Code

int printlog (const char* fmt, ...)
{

va_list args;
if (NULL == logfile) {

logfile = fopen ("the_log","a");
if (NULL == logfile) {

return -1;
}

}
va_start (args, fmt);

© 2018 Steven S. Lumetta. All rights reserved. slide 41ECE 220: Computer Systems & Programming

Insert the blue
lines as shown.

One More Line of Code: Call vfprintf

int printlog (const char* fmt, ...)
{
va_list args;
if (NULL == logfile) {

logfile = fopen ("the_log","a");
if (NULL == logfile) {

return -1;
}

}
va_start (args, fmt);
return vfprintf (logfile, fmt, args);

}

© 2018 Steven S. Lumetta. All rights reserved. slide 42ECE 220: Computer Systems & Programming

Just call vfprintf!

What Does printlog Return?

int printlog (const char* fmt, ...);

But what does our function return?

Number of characters printed
or a negative value on failure

(just like printf).

© 2018 Steven S. Lumetta. All rights reserved. slide 43ECE 220: Computer Systems & Programming

