
4/2/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Implementing Dynamic Allocation

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Dynamic Allocation Interacts with the OS

Recall our canonical
memory map.

The address
◦after the end of the heap
◦ is called the “break.”

To change the break,
make a system call.

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

system space

system space

code

stack

global data
heap

(dynamically
allocated)

break→

sbrk Adjusts the Address of the Break

In Linux, for example, the call is

void *sbrk (intptr_t increment);

Calling sbrk requests that
◦ the break be changed by adding increment,
◦and returns the address of the previous
break (or ((void*)-1) on failure).

One can grow or shrink the heap with sbrk.

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

intptr_t is Needed to Hold the sbrk Argument

void *sbrk (intptr_t increment);

But what’s an intptr_t?

An integer large enough to hold a pointer.

These became important
with 64-bit address spaces.

An int can no longer hold a pointer!

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

4/2/2018

2

Let’s Write a Best-Fit Logarithmic Allocator

Let’s implement dynamic allocation!

We’ll start simple: no reclamation.

Then we’ll write
◦a best-fit logarithmic allocator,
◦which was common for a couple of decades.

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

For Simplicity, We Build on Top of malloc

To avoid overriding the C library,
◦ we use malloc instead of sbrk
◦ to get a big chunk of memory to manage,
◦ and store the chunk in file-scope variables.

In particular,
static uint8_t* free_bytes;

static size_t n_free_bytes;

The free memory consists of n_free_bytes
bytes starting at address free_bytes.

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

First Step: Carving Off a Block

How do we allocate a new block?

If we don’t care about reclamation
◦ (reusing blocks that are freed),
◦ carving off a block is straightforward.

We’ll write a function for doing so:

void* mem220_allocate
(size_t n_bytes);

The behavior is identical to that of malloc.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

New block starts at start of free memory.

An Overly Simple Allocation Routine

void* mem220_allocate (size_t n_bytes)
{

void* new_block = free_bytes;
if (n_free_bytes < n_bytes) {

return NULL;
}
free_bytes += n_bytes;
n_free_bytes -= n_bytes;
return new_block;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

4/2/2018

3

Do we have enough free memory?

Check Whether Available Memory is Sufficient

void* mem220_allocate (size_t n_bytes)
{

void* new_block = free_bytes;
if (n_free_bytes < n_bytes) {

return NULL;
}
free_bytes += n_bytes;
n_free_bytes -= n_bytes;
return new_block;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Remove
the

block from
free

memory.
And return the new block.

Remove the Block from Free Memory and Return It

void* mem220_allocate (size_t n_bytes)
{

void* new_block = free_bytes;
if (n_free_bytes < n_bytes) {

return NULL;
}
free_bytes += n_bytes;
n_free_bytes -= n_bytes;
return new_block;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

Should Add Alignment or Round Up Block Sizes

What about alignment?

In our next implementation,
◦ all blocks will be 2k bytes for some integer k
◦ and the smallest will be 32 bytes
(on the lab machines),

◦ so all blocks will maintain malloc’s
alignment (typically 16-byte).

To align, round up, then squash the low bits
◦ X = (X + 15) & -16
◦ X = (X + 15) ^ ((X + 15) & 15) // safer

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

Want to Bin Block Sizes and Make Tracking Easy

How should we manage allocated blocks?

Without binning block sizes in some way,
◦ fragmentation effects can become bad,
◦ especially when coupled with alignment.
◦Have you ever played “continuous Tetris?”

Allowing arbitrary addresses also makes
tracking blocks more difficult (and
pointers have alignment requirements, too).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

4/2/2018

4

Recall Dynamic Resizing’s Approach to Array Sizes

Think back to dynamic resizing:
◦we double our array
◦ each time we need more.

When we examined waste space,
◦we found that doing so
◦gave us a pretty good fit
◦ (average 38% waste).

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

We Build a Best-Fit Logarithmic Allocator

Let’s use the same idea for allocation:
◦ allocate the smallest power of 2 bytes
◦ into which the desired block fits.

This approach is called a
best-fit logarithmic allocator.

We might allow blocks to be split (into
two smaller blocks) and re-combined.
◦ For example, see the page allocation
management in the Linux kernel (in ECE391).

◦ Our implementation does neither.

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

A Linked List Holds Free Blocks of Each Size

Let’s talk about data structures.

Free blocks
are kept in
linked lists
based on the
size of the
blocks, as
shown to the
right.

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

size
512k
list

size
32
list

size
64
list

size
128
list

size
1M
list

. . .

Allocate New Blocks as Necessary (As Done Earlier)

When we need a block, we look in the list.

For example,
if we want 100
bytes, we look
in the size 128
list.

If list is empty,
we allocate a
new block (as before).

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

size
512k
list

size
32
list

size
64
list

size
128
list

size
1M
list

. . .

4/2/2018

5

Can Build a Data Structure to Find Info about Blocks

When a block is freed, we must know its size.

One option:
◦ build a data structure
◦ to translate block address
◦ into other information
◦ (look up information based on address).

Some memory managers
must take such an approach.

But we don’t need to do so.

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

What’s in Memory Around a Block?

Let’s say that you call malloc.

Back comes a block.

What is stored in the
addresses before the block?

What about the addresses
after the block?

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

bits

block

bits

What’s in Memory Around a Block?

Now you are writing malloc.

You need to return a block.

What is stored in the
addresses before the block?

What about the addresses
after the block?

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

block

Anything
you want!

Anything
you want!

Use a Header Above the Block to Store Information

We store the block size in a header
above the block:

struct mem_block_t {

size_t size;

mem_block_t* next;

};

The next field is for our linked lists.
On 64-bit machines,
sizeof (mem_block_t) is 16.

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

4/2/2018

6

Actual Allocation Contains Three Sections

In other words, the block
that we actually allocate
includes
◦a mem_block_t,
◦bytes for the caller, and
◦padding to a power of 2.

The pointer that we return
is the address of the caller’s
data (after mem_block_t).

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

caller
block

mem_block_t

padding

returned
value→

2k bytes total

Linked List Heads are a File-Scope Array

The linked lists are lists of mem_block_t.

What do our bins look like in C?

#define MEM220_MAX_ALLOC_LOG 20

static mem_block_t*
mem_bin[MEM220_MAX_ALLOC_LOG+1];

The head of the linked list
◦with blocks of 2k bytes
◦has array index k.

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

C Allows Programmers to Hide Details from Compiler

Notice that,
◦ from the point of view
◦ of code that manages
linked list of free blocks,

◦ only the mem_block_t
exists.

The blocks are
generally larger than
sizeof (mem_block_t).

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

caller
block

mem_block_t

padding

returned
value→

2k bytes total

Interface Offers Four Functions Similar to the C Library

Next, let’s take a look at the API.
We’ll write four functions
◦ corresponding to the four
◦ that we discussed
◦ in the C library.

void* mem220_allocate
(size_t n_bytes);

You’ve seen this routine already.
It behaves the same as malloc.

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

4/2/2018

7

Second Routine Replaces calloc

The next routine replaces calloc.
In new code,
◦ there’s less benefit*
◦ to matching the original signature,
◦ so instead we have:
void* mem220_allocate_and_zero

(size_t n_bytes);
The routine tries to allocate and zero a block,
returning a pointer to the block or NULL.

*Using distinct parameter lists may help
to catch some programmer mistakes.

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

Third Routine Replaces realloc

The third interface replaces realloc:
int32_t mem220_reallocate

(void** ptr_to_ptr,
size_t n_bytes);

The routine works similarly to realloc:
◦ given a pointer to a pointer to an old block*
◦ and given a new size
◦ the routine tries to change the block’s size,
◦ copying and freeing the old block as
necessary.

*Sadly, an explicit cast to (void**) is now required.

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

Third Routine Avoids realloc Misuse Case

Also, the new version avoids the common
misuse case for realloc:

int32_t mem220_reallocate
(void** ptr_to_ptr,
size_t n_bytes);

*ptr_to_ptr changes
◦only on success, and
◦ only when the block had to move.

The function returns 0 on success,
or -1 on failure.

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

Example of a Value-Result Argument

int32_t mem220_reallocate
(void** ptr_to_ptr,
size_t n_bytes);

Arguments such as ptr_to_ptr, that both
◦convey a value to the function and
◦convey an output back to the caller
◦are sometimes called value-result
arguments.

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

4/2/2018

8

Final Routine is Identical to free

The last routine behaves identically to free:

void mem220_free (void* ptr);

Note that blocks from C’s library API are not
interchangeable with blocks from our API.

Blocks allocated with our routines must
be freed with mem220_free.

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

When Does Non-Trivial Initialization Occur?

Remember our file-scope variables?
static uint8_t* free_bytes;

static size_t n_free_bytes;

static mem_block_t*
mem_bin[MEM220_MAX_ALLOC_LOG+1];

You may have noticed that
they are not initialized.

When does initialization take place?

And how do we cause it to happen?

© 2018 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

When Can Non-Trivial Initialization Occur?

What are the options?
1. static initialization

(static int x = 42;) —
not a solution for our problem

2. a new API call
(int32_t mem220_init (void);) —
requires that other code call it first

3. compiler/language/Makefile support
(available in C++) — only last available in C,
and not always easy to use anyway

4. on first API call (check in every call) —
requires extra work for every call

© 2018 Steven S. Lumetta. All rights reserved. slide 31ECE 220: Computer Systems & Programming

Which API Calls Can Be Made First?

Which can the user call first?
mem220_allocate
mem220_allocate_and_zero
mem220_reallocate
mem220_free

But
◦ mem220_allocate_and_zero and
mem220_reallocate

◦ call mem220_allocate!
So only one call need be checked…

© 2018 Steven S. Lumetta. All rights reserved. slide 32ECE 220: Computer Systems & Programming

4/2/2018

9

We Check for Initialization on Each API Call

We choose the last option:
initialize on the first API call.

Why?

Dynamic allocation is already “expensive”
(>200 cycles on my Cygwin desktop in April 2018).

And only one check is needed.
◦ User cannot call mem220_free first.
◦ Need to add a check to mem220_allocate.
◦ Other API calls call mem220_allocate to
obtain a block before using file-scope variables.

© 2018 Steven S. Lumetta. All rights reserved. slide 33ECE 220: Computer Systems & Programming

Initialization Uses File-Scope Variable and Static Function

What’s the mechanism?

A file-scope variable and a static function
(not accessible outside the file).

static int32_t init_done = 0;

static void mem220_init ();

// And, at start of mem220_allocate…

if (!init_done) { mem220_init (); }

(mem220_init sets init_done to 1.)

© 2018 Steven S. Lumetta. All rights reserved. slide 34ECE 220: Computer Systems & Programming

Index into
array of

free block
lists.

Pointer to new block.

Number of bytes
needed (including

header).

Start with Local Variables and Initialization

Let’s look at mem220_allocate.
void* mem220_allocate

(size_t n_bytes)
{

size_t block_size;
int32_t bin;
mem_block_t* new_block;
if (!init_done) {

mem220_init ();
}

© 2018 Steven S. Lumetta. All rights reserved. slide 35ECE 220: Computer Systems & Programming

We need n_bytes
plus a mem_block_t.

Calculate Necessary Values and Check Arguments

block_size = n_bytes +

sizeof (*new_block);

if (n_bytes == 0 ||

block_size > MEM220_MAX_ALLOC) {

return NULL;

}

bin = log2_ceil (block_size);

© 2018 Steven S. Lumetta. All rights reserved. slide 36ECE 220: Computer Systems & Programming

4/2/2018

10

Size too small or too large? Give up.

Calculate Necessary Values and Check Arguments

block_size = n_bytes +

sizeof (*new_block);

if (n_bytes == 0 ||

block_size > MEM220_MAX_ALLOC) {

return NULL;

}

bin = log2_ceil (block_size);

© 2018 Steven S. Lumetta. All rights reserved. slide 37ECE 220: Computer Systems & Programming

Find the right bin (function discussed later).

Calculate Necessary Values and Check Arguments

block_size = n_bytes +

sizeof (*new_block);

if (n_bytes == 0 ||

block_size > MEM220_MAX_ALLOC) {

return NULL;

}

bin = log2_ceil (block_size);

© 2018 Steven S. Lumetta. All rights reserved. slide 38ECE 220: Computer Systems & Programming

What’s this?

Both cases set
new_block.

Does the right list have
a free block in it?

Two Places to Obtain a Block

if (mem_bin[bin] != NULL) {
// get block from free list

} else {
// allocate a new block

}
return (new_block + 1);

© 2018 Steven S. Lumetta. All rights reserved. slide 39ECE 220: Computer Systems & Programming

Pointer Arithmetic Gives the Right Answer

Remember pointer arithmetic?

The type of new_block is
mem_block_t*.

So where does (new_block + 1)
point?

To the block to be returned!

© 2018 Steven S. Lumetta. All rights reserved. slide 40ECE 220: Computer Systems & Programming

caller
block

new_block→

padding

(new_block + 1)→

mem_block_t

4/2/2018

11

Remove block from linked list.

If Free List Not Empty, Remove One Block

Now back to obtaining a block.
First, the easy case: there’s one in the free list.

// get block from free list

new_block = mem_bin[bin];

mem_bin[bin] = new_block->next;

© 2018 Steven S. Lumetta. All rights reserved. slide 41ECE 220: Computer Systems & Programming

Number of bytes
in block (2bin).

No space?
Give up.

Check Available Space for a New Block

// allocate a new block
n_bytes = (1UL << bin);
if (n_free_bytes < n_bytes) {

return NULL;
}
new_block =(mem_block_t*)free_bytes;
free_bytes += n_bytes;
n_free_bytes -= n_bytes;
new_block->size = n_bytes;

© 2018 Steven S. Lumetta. All rights reserved. slide 42ECE 220: Computer Systems & Programming

Allocate a New Block

// allocate a new block
n_bytes = (1UL << bin);
if (n_free_bytes < n_bytes) {

return NULL;
}
new_block =(mem_block_t*)free_bytes;
free_bytes += n_bytes;
n_free_bytes -= n_bytes;
new_block->size = n_bytes;

© 2018 Steven S. Lumetta. All rights reserved. slide 43ECE 220: Computer Systems & Programming

Allocate a new
block as before

(but with an
explicit cast).

Mark the
size field in
the header.

Write the Block Size into the New Block’s Header

// allocate a new block
n_bytes = (1UL << bin);
if (n_free_bytes < n_bytes) {

return NULL;
}
new_block =(mem_block_t*)free_bytes;
free_bytes += n_bytes;
n_free_bytes -= n_bytes;
new_block->size = n_bytes;

© 2018 Steven S. Lumetta. All rights reserved. slide 44ECE 220: Computer Systems & Programming

4/2/2018

12

Still Need to Write the Helper Function

That’s it for allocation.

But what did this do?

bin = log2_ceil (block_size);

Calculate k such that 2k ≥ block_size.

In other words, return 𝐥𝐨𝐠𝟐 𝐛𝐥𝐨𝐜𝐤_𝐬𝐢𝐳𝐞
(the ceiling of the base 2 logarithm).

How can we calculate that value?

© 2018 Steven S. Lumetta. All rights reserved. slide 45ECE 220: Computer Systems & Programming

How Can We Calculate Ceiling of Log2?

// Returns ceiling of

// log_2 of its argument.

static int32_t log2_ceil

(size_t value);

One option: library calls (with floating-point).

Instead, let’s use...

bits!

© 2018 Steven S. Lumetta. All rights reserved. slide 46ECE 220: Computer Systems & Programming

Find the First 1 Bit and Check for a Power of Two

Let’s look at a number as bits:

value = 000…000 1 ??????

To calculate ceil (log2 (value)), we
◦ find the location of the first 1 bit, and
◦round up unless all of the lower bits are 0.

Let’s start with the second part.

How can we check: is value a power of 2?

© 2018 Steven S. Lumetta. All rights reserved. slide 47ECE 220: Computer Systems & Programming

Is value a
power of 2?

If so, start
counting at -1.

If not, start
counting at 0.

Initialize Count to Reflect Whether value is a Power of 2

static int32_t log2_ceil
(size_t value)

{
int32_t ret_val;
if ((value & (value - 1)) == 0){

ret_val = -1;
} else {

ret_val = 0;
}

© 2018 Steven S. Lumetta. All rights reserved. slide 48ECE 220: Computer Systems & Programming

4/2/2018

13

Count number of
non-zero bits
from low end.

Return count adjusted
by power of 2 check.

Count Number of Non-Zero Bits on Smaller End

while (value > 0) {

ret_val++;

value >>= 1;

}

return ret_val;

© 2018 Steven S. Lumetta. All rights reserved. slide 49ECE 220: Computer Systems & Programming

Ignore requests to free NULL.

Cast pointer into a mem_block_t*.

Convert Freed Pointer into a mem_block_t*

Now, let’s look at freeing a block.

void mem220_free (void* ptr)
{

mem_block_t* mem_block = ptr;
int32_t bin;
if (ptr == NULL) { return; }

© 2018 Steven S. Lumetta. All rights reserved. slide 50ECE 220: Computer Systems & Programming

Pointer Arithmetic Gives the Right Answer

Here’s what we have:

The type of mem_block is
mem_block_t*.

How can we get back
the pointer to our header?

mem_block - 1

© 2018 Steven S. Lumetta. All rights reserved. slide 51ECE 220: Computer Systems & Programming

???→

mem_block→
caller
block

padding

mem_block_t

Add block to correct linked list
(of free blocks of the same size).

Read block size from header
and calculate bin number.

Find Block Size and Insert Block into Free List

bin = log2_ceil

(mem_block[-1].size);

mem_block[-1].next = mem_bin[bin];

mem_bin[bin] = &mem_block[-1];

© 2018 Steven S. Lumetta. All rights reserved. slide 52ECE 220: Computer Systems & Programming

4/2/2018

14

The Code is on the Class Web Page

The other two calls are straightforward.

Reading the code is left as an exercise.

All of it, along with some short tests,
can be found on the class web page.

© 2018 Steven S. Lumetta. All rights reserved. slide 53ECE 220: Computer Systems & Programming

