

sbrk Adjusts the Address of the Break

In Linux, for example, the call is

void *sbrk (intptr t increment);

Calling **sbrk** requests that

- the break be changed by adding increment,
- and returns the address of the previous break (or ((void*)-1) on failure).

One can grow or shrink the heap with **sbrk**.

intptr t is Needed to Hold the sbrk Argument void *sbrk (intptr t increment);

But what's an intptr t? An integer large enough to hold a pointer.

> These became important with 64-bit address spaces. An int can no longer hold a pointer!

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved.

slide 3

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved.

1

An Overly Simple Allocation Routine

<pre>void* mem220_allocate (size_t n_ {</pre>	bytes)
<pre>void* new_block = free_bytes</pre>	s ;
if (n_free_bytes < n_bytes)	{
return NULL;	
}	
<pre>free_bytes += n_bytes;</pre>	
n_free_bytes -= n_bytes;	
return new_block;	
New block starts at start of free men	nory.
ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All right	s reserved. slide 8

slide 27

Third Routine Avoids realloc Misuse Case
Also, the new version avoids the common misuse case for realloc:
int32 t mem220 reallocate
(void** ptr to ptr,
size_t n_bytes);

*ptr_to_ptr changes
• only on success, and
• only when the block had to move.

The function returns 0 on success, or -1 on failure.

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved.

Write the Block Size into the New Block's Header

