
4/2/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Dynamic Allocation Think-Pair-Share

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Moving Data Structures Requires Flattening

As you know,
◦ pointers are memory addresses
◦ and don’t mean anything
◦ on other computers, nor
◦ in a later execution of the same program.

When a program wants
◦ to save a data structure to a file,
◦ or to send a data structure
to another computer,

◦ it must flatten the structure.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Flattening Means Packing into an Array of Bytes

To flatten a data structure,
◦all pointers must be removed
◦and the data packed into
a contiguous array of bytes

◦ in a way that allows the data structure
to be rebuilt (unflattened).

Let’s do an example of unflattening …
…as a think-pair-share.

But first, we’ll do flattening together.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

Example: Flatten the Tree Shown Here

The node structure for the tree to the right:
struct node_t {

node_t* left;
node_t* mid;
node_t* right;
int32_t val;

};

Flattening can be done
in any order. Let’s use
the order in the structure.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

4

3
1

6

left right

mid

left

mid

right

mid

7
4

8
2

val (in circle)

4/2/2018

2

Write a Recursive Function to Flatten a Tree

Let’s write a function to flatten such a tree
◦ into an array of integers.
◦ For NULL subtrees, we use the symbolic
constant ABSENT.
int32_t pack_tree (int32_t ar[],

int32_t len, int32_t pos,
node_t* root);

pos is the current writing position (starts at 0)

The function returns the final length written or
-1 on failure (array too short to fit the tree).

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Enough space
to write
ABSENT?

Add ABSENT
to end of array.

Indicate that another space has been used.

Stopping Condition: Reached an Empty Subtree

We’ll write the function recursively.
First, we check for NULL:
if (NULL == root) {

if (len <= pos) {
return -1;

}
ar[pos] = ABSENT;
return (pos + 1);

}

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Pack the Three Subtrees Recursively

Next, we write the three subtrees recursively.
On failure, we also fail.
if (-1 == (pos = pack_tree

(ar, len, pos, root->left)) ||
-1 == (pos = pack_tree

(ar, len, pos, root->mid)) ||
-1 == (pos = pack_tree

(ar, len, pos, root->right))) {
return -1;

}

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 7

This code is a little tricky.

First, the leap of faith:
pack_tree writes a tree into an array.

It works.
We haven’t finished writing it yet.

But we have to assume that it works.
If it fails, it returns -1.

ECE 220: Computer Systems & Programming

Pass current
array position

for writing.

Return value gives
the new array

position for writing.

Check for failure. On failure, logical OR
stops evaluating!

Pack the Three Subtrees Recursively

Next, we write the three subtrees recursively.
On failure, we also fail.
if (-1 == (pos = pack_tree

(ar, len, pos, root->left)) ||

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

4/2/2018

3

In which case, position
is that returned from

the first call.

Only called if
first call succeeds.

Pack the Three Subtrees Recursively

Next, we write the three subtrees recursively.
On failure, we also fail.
if (-1 == (pos = pack_tree

(ar, len, pos, root->left)) ||
-1 == (pos = pack_tree

(ar, len, pos, root->mid)) ||
-1 == (pos = pack_tree

(ar, len, pos, root->right))) {
return -1;

}

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Pack the Three Subtrees Recursively

Next, we write the three subtrees recursively.
On failure, we also fail.
if (-1 == (pos = pack_tree

(ar, len, pos, root->left)) ||
-1 == (pos = pack_tree

(ar, len, pos, root->mid)) ||
-1 == (pos = pack_tree

(ar, len, pos, root->right))) {
return -1;

}

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 10

Control flow and data between
second call and third call is exactly the same.

ECE 220: Computer Systems & Programming

Add value
to end of array.

Indicate that another space has been used.

Enough space
to write
value?

Finally, Write the Node’s Value

if (len <= pos) {

return -1;

}

ar[pos] = root->val;

return (pos + 1);

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

Time for Another Think-Pair-Share

As before, let’s do a group exercise in lecture.

The process:
1. I give you a problem.
2. You form groups of 3-4 people.
3. Talk about ways to solve the problem.
4. Once enough of the groups have finished,

one group volunteers to share their
answer.

5. We go over the group’s answer together.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

4/2/2018

4

Your Task: Unflatten a Tree

The task: recursively unflatten
◦ array ar (left, mid, right, val order)
◦ into a dynamically-allocated tree of nodes.
◦ pos initially points to copy of array length,

so read array from right to left
◦ Non-existent children appear as

ABSENT (symbolic name) in the array.
node_t* build_tree (int32_t const ar[],

int32_t* pos);
If anything goes wrong, use (and write) recursive

void free_tree (node_t* root);
to free a node and all children, and set (*pos) < 0.

slide 13ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved.

4

3
1

6

left right

mid

left

mid

right

mid

7
4

8
2

val (in circle)

