4/2/2018

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Dynamic Allocation Think-Pair-Share

Moving Data Structures Requires Flattening

As you know,
o pointers are memory addresses
cand don’t mean anything
°on other computers, nor
°in a later execution of the same program.

When a program wants
°to save a data structure to a file,

oor to send a data structure
to another computer,

oit must flatten the structure.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 1

ECE 220: Computer Systems & Programming ©2016:2018 Steven S. Lumetta. Al rights reserved.

slide 2

Flattening Means Packing into an Array of Bytes

Example: Flatten the Tree Shown Here

To flatten a data structure,
call pointers must be removed

cand the data packed into
a contiguous array of bytes

oin a way that allows the data structure
to be rebuilt (unflattened).

Let’s do an example of unflattening ...
...as a think-pair-share.
But first, we’ll do flattening together.

The node structure for the tree to the right:

struct node t {
node_t* left;
node_t* mid;
node_t* right;
int32 t val;

val (in circle)

b8

Flattening can be done
in any order. Let’s use
the order in the structure.

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved. slide 3

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. Al rights reserved.

slide 4

4/2/2018

Let’s write a function to flatten such a tree
°into an array of integers.

> For NULL subtrees, we use the symbolic
constant ABSENT.

int32_t pack tree (int32_t ar[],
int32_t len, int32_t pos,
node_t* root) ;
pos is the current writing position (starts at 0)

The function returns the final length written or
-1 on failure (array too short to fit the tree).

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved. slide 5

We'll write the function recursively.

First, we check for NULL:
if (NULL == root) {

’ ;

Next, we write the three subtrees recursively.

On failure, we also fail.
if (-1 = -

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved.

slide 6

ret
ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved. slide 7

Next, we write the three subtrees recursively.
On failure, we also fail.

if (= pack tree

(ar,/ len, , root->left))

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved.

slide 8

4/2/2018

Next, we write the three subtrees recursively.

On failure, we also fail.
if (-1 == (pos = pack_tree
(ar,fllen, pos, roo

return -1;

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved. slide 9

Next, we write the three subtrees recursively.
On failure, we also fail.

if (-1 == (pos = pack_tree
(ar, len, pos, root->left)) ||

-1 == (pos = pack_tree
(ar, len, pos, root->mid)) ||

-1 == (pos = pack_tree

(ar, len, pos, root->right))) {
return -1;

| sl sna g s ey some

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved. slide 10

—.

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved. slide 11

As before, let’s do a group exercise in lecture.

The process:
1. I give you a problem.
2. You form groups of 3-4 people.
3. Talk about ways to solve the problem.
4

. Once enough of the groups have finished,
one group volunteers to share their
answer.

5. We go over the group’s answer together.

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved. slide 12

Your Task: Unflatten a Tree

The task: recursively unflatten
o array ar (left, mid, right, val order)
°into a dynamically-allocated tree of nodes.
o pos initially points to copy of array length,
so read array from right to left
> Non-existent children appear as
ABSENT (symbolic name) in the array.
node_t* build tree (int32_t const ar[],
int32 t* pos);
If anything goes wrong, use (and write) recursive
void free tree (node t* root);
to free a node and all children, and set (*pos) <O0.

val (in circle)

right

left

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 13

4/2/2018

