
4/2/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Pointer-Based Data Structures

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Can We Speed Up Deletion from Linked Lists?

Can we speed up deletion from a linked list?

To delete p, we need to find p’s predecessor.

Any ideas?

Why not add a second player_t*?

We can call it prev.

Doing so gives us a doubly-linked list.

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

There are Many Ways to Doubly-Link a List

Drawn somewhat sloppily…

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

player

player_list

player
player

player

NULL

NULL

Use a Sentinel and a Cyclic List to Simply the Code

One good way,
◦where “good” means that
◦both insertion and deletion are simple,
◦ is to use a sentinel:

static player_t player_list;

Notice that player_list is not a pointer.

It’s a fake player for use as a sentinel.

To avoid NULL, the list is then cyclic.

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

4/2/2018

2

A Cyclic, Doubly-Linked List with a Sentinel

Drawn below is a cyclic, doubly-linked
list with a sentinel.

All pointers point to start of target
structures (not the middle).

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

player_list

player player playerplayer

Easy to Walk Over the List of Players

Let’s see how it’s used.

How do we do something for all players?
player_t* p;
for (

) {
// do something for all players

}

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Start with an iteration
variable p and a for loop.

Easy to Walk Over the List of Players

Let’s see how it’s used.

How do we do something for all players?
player_t* p;
for (

) {
// do something for all players

}

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Where is the first player?

p = player_list.next;

Easy to Walk Over the List of Players

Let’s see how it’s used.

How do we do something for all players?
player_t* p;
for (p = player_list.next;

) {
// do something for all players

}

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

What is the end of the list?
(Hint: not NULL.)

&player_list != p;

4/2/2018

3

Easy to Walk Over the List of Players

Let’s see how it’s used.

How do we do something for all players?
player_t* p;
for (p = player_list.next;

&player_list != p;
) {

// do something for all players
}

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

And how do we advance to the next player?

p = p->next

The Opposite Direction is Equally Easy

But…what if we want the other direction?

Just change next to prev in both cases!
player_t* p;
for (p = player_list.prev;

&player_list != p;
p = p->prev) {
// do something for all players

}

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

Insertion Requires Four Changes In Correct Order

Insertion at the
front requires

four changes…

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

player_list

player player playerplayer

player

1

2

3
4

Insertion at Either End of the List is Easy

Given a new player_t* p, we have…
p->next = player_list.next;
p->prev = &player_list;
player_list.next->prev = p;
player_list.next = p;

Or, at the end,
p->prev = player_list.prev;
p->next = &player_list;
player_list.prev->next = p;
player_list.prev = p;

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

4/2/2018

4

Deletion Requires Only Two Changes

What about deletion?

How can we delete
the middle real player?

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

player_list

player player playerplayer

1

2

The order doesn’t
matter.

Deletion is Quite Simple

Given a player_t* p to be deleted…

p->next->prev = p->prev;

p->prev->next = p->next;

That’s it! No loop required!

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

Sentinel Links to Itself When the List is Empty

What happens if we delete the last player?

p->next points to player_list

But so does p->prev…

player_list now
points to itself

in both directions!

(That’s an
empty list.)

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

player_list

player player

1

2

Sentinel Links to Itself When the List is Empty

(an empty cyclic, doubly-linked
list with a sentinel)

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

player_list

player

4/2/2018

5

Pointers Can Serve Many Purposes

In general, we can
◦add an arbitrary number of pointers
◦ to any structure.

Pointers can be used to organize groups of
structures in different ways.
◦ orderings
◦ relationships
◦properties

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

Example: Use Linked List to Maintain Ordering

For example, say that we want to sort players
◦by name,
◦by age, and
◦by number of games played.

We can maintain all three orderings
◦using three separate “next” fields
(player_t*) in the player structure.

◦Each field corresponds to a single ordering.

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

Example: Abstract Syntax Trees (ASTs)

Another example:
◦abstract syntax trees (ASTs)
◦used as an intermediate representation (IR)
of a program for compilation

Nodes represent operators or statements,
◦operands are a relation to operators, and
◦ initialization, tests, and updates are a
relation to statements (if, for, while, do).

◦All make use of pointers to other nodes.

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

Illustration of an AST Construction

for (p = player_list.next;
&player_list != p;
p = p->next) {
// do something for all players

}

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

"player_list" "next"

"p" .

=

"p"

"player_list"

&

"next""p"

"p" ->

=
init

!=test

update

body

for
more
code…

4/2/2018

6

switch Statement Cases Cannot be Linked Directly

What about switch statements?

What’s the problem?
Number of cases is

effectively unbounded.
How can we add fields to point

to an unknown number of cases?
Answer: we can’t.

So … don’t allow switch statements?

Didn’t we already solve this problem?

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

Illustration of a switch Statement Construction

Solution: use two pointers…

You’ll see something similar in MPs 10 and 11.

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

case
switch

1

case

code 2

case

code

next

3

case

code

next …next

