
3/27/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Fully Dynamic Allocation

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Summary of Dynamic Resizing Pros and Cons

dynamically resized array
◦ start with small constant
◦multiply size by a constant as necessary

pros
◦ easy to implement
◦array uses contiguous memory

cons (quantified for 2× multiplier)
◦ copying cost (≤ 2N for N players)
◦waste space (~38%)

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Player Deletion with Dynamic Resizing

What about deletion?

If order doesn’t matter,
◦ copy last element over deleted element,
◦ then reduce count
◦ (requires constant time).

If order matters, deletion can be expensive.

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

Allocating Individual Players Requires a Pointer for Each

Can we use dynamic allocation
◦ to allocate one thing (a player) at a time
◦ instead of resizing an array?

Yes, but first, we need to solve a problem:
◦Every call to malloc returns a pointer.
◦These pointers have no predictable
relationship to one another.

◦So we need to store a
pointer to each player.

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

3/27/2018

2

Where Can All the Pointers Go?

With dynamic resizing, we used one
player pointer in the global data area:

static player_t* player_list = NULL;

Where can we put more pointers?

We can use
◦a dynamically resized array of pointers.
◦But … have we really solved the problem in
that case? (An array of pointers does
reducing copying and waste space.)

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Where Can We Put More Pointers?

Can we do something else?

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

player

player_list

player
player

player

Solution: Add a Pointer to the Player Struct!

What if we add a player_t*
to the player struct?

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

player

player_list

player
player

player

Mark the End of the List by Pointing to Nothing

What about the last player’s pointer?

Set it to NULL.

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

player

player_list

player
player

player

NULL

3/27/2018

3

Singly-Linked Lists are Common for Unordered Groups

The data structure shown
◦ is called a singly-linked list
◦ (or, frequently, just a linked list).
◦Singly-linked lists are usually used when
order is not important.

How do we insert into a linked list?
◦Specifically, where should we insert a
new element: at the start, or the end?

Insert at the start: it’s faster.

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Inserting into a Singly-Linked List Requires Two Changes

Make two changes. In what order?

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

player

player_list

player
player

player

NULL

new_player

1

2

Correct Ordering of Changes is Important

First, change the next field of the new player.

Otherwise, the old list is lost!

new_player->next = player_list;

player_list = new_player;

That’s all.

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

How Can We Remove Player p from the List?

Need to change pointer
(link) marked in blue.

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

player

player_list

player
player

player

NULL

p

3/27/2018

4

Singly-Linked List Deletion is Linear in Size of List

Deletion is slower:
◦ to delete player p
◦ from a list that starts at player_list,
◦we must walk over the list to find p,
◦ then change pointer to p to p->next.

In general,
◦with N things in the list,
◦we examine on average N/2.

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

Modify Player Structure to Use Dynamic Allocation

Before writing player_delete,
◦ let’s modify our player structure
◦ to use dynamic allocation
◦ for the name* field.

*We treated the password field as a normal
string before, but technically it should be

hashed or encrypted to a fixed-length string.

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

Review: Example Player Structure

struct player_t {
char name[32];
char password[20];
int32_t age;
int32_t num_games;
int32_t score_dist[16];
struct game_t* game;

};

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

char* name;

name
points to a

dynamically
allocated
block of
memory.player_t* next;

next is used for the linked list.

Modify player_init to Dynamically Allocate the Name

Then, in player_init, we can write…
p->name = malloc (strlen (n) + 1);
if (NULL == p->name) { return 0; }
strcpy (p->name, n);

or
p->name = strdup (n);
if (NULL == p->name) { return 0; }

(recall that n is the new player’s name).

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

3/27/2018

5

First, Remove Player to Be Deleted from the List

Questions for you:

To delete “Y,” what needs to change?

The next field of player “Z.”

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

player_list

player

name

“Z”

player

name

“Y”

player

name

“X”

NULL

Free All Dynamically Allocated Data for the Player

Questions for you:

What needs to be freed to delete “Y?”

Both the player structure and the name.

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

player_list

player

name

“Z”

player

name

“Y”

player

name

“X”

NULL

Do Not Use Dynamic Data After Freeing It

Questions for you:

In what order?

First the name, then the player structure.

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

player_list

player

name

“Z”

player

name

“Y”

player

name

“X”

NULL

1

2

Ready to Write a Function to Delete a Player

Now we can write player_delete.

The function signature is:
int32_t player_delete (player_t* p);
◦p points to the player structure
to remove from the list and free

◦ function returns 1 on success, or 0 on failure

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

3/27/2018

6

Using a player_t**
makes the code

simpler.

Use a player_t** to Find the Link to Change

player_t** find;
for (find = &player_list;

p != *find;
find = &(*find)->next) {
if (NULL == *find) {

return 0;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

Point find first to
the pointer to the
head of the list.

Initialize find to Point to the Pointer to the Head

player_t** find;
for (find = &player_list;

p != *find;
find = &(*find)->next) {
if (NULL == *find) {

return 0;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

Once p == *find,
we have found

the link to change.

Advance Until find Points to Pointer to Player to Delete

player_t** find;
for (find = &player_list;

p != *find;
find = &(*find)->next) {
if (NULL == *find) {

return 0;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

Advance by pointing find to the
next field of the structure to which
the pointer find points to points.

Move find from next Field to next Field

player_t** find;
for (find = &player_list;

p != *find;
find = &(*find)->next) {
if (NULL == *find) {

return 0;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

3/27/2018

7

If we reach the end of the
list, p is not in the list, so fail.

For Safety, Check for End of List in Loop Body

player_t** find;
for (find = &player_list;

p != *find;
find = &(*find)->next) {
if (NULL == *find) {

return 0;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

Remember that find points to
the pointer to be changed.

Free the name,
then the player.

Return success.

Remove the Player, Free the Blocks, and Return Success

*find = p->next;

free (p->name);

free (p);

return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

Examine How player_delete Works in Detail

Let’s do a detailed example
◦of player_delete execution
◦ on a linked list of three players
◦with variables shown in LC-3 memory.

Let’s first identify where each variable
resides:
◦ in the global data area,
◦ in the heap, or
◦ in the stack.

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

Dynamically Allocated Data Reside in the …

The linked list is shown below (head on left).

Where are these data
(global data, heap, or stack)?

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

3/27/2018

8

File-Scope Variables Reside in the …

The file-scope variable
player_list points to
the head of the list.

Where is player_list stored?

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

Local Variables Reside in the …

And where is local
variable find?

© 2018 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
bitsxE743

stack

Parameter p is Close to Local Variable find

© 2018 Steven S. Lumetta. All rights reserved. slide 31ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
bitsxE743

stack

p
x8424xE748

Start the Function by Initializing find

Here’s the loop again.
for (find = &player_list;

p != *find;
find = &(*find)->next) {
if (NULL == *find) {

return 0;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 32ECE 220: Computer Systems & Programming

Start by initializing find.

3/27/2018

9

Initialize find to &player_list

© 2018 Steven S. Lumetta. All rights reserved. slide 33ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
bitsxE743

stack

p
x8424xE748

x3998

Continue Executing the Loop

What happens next?
for (find = &player_list;

p != *find;
find = &(*find)->next) {
if (NULL == *find) {

return 0;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 34ECE 220: Computer Systems & Programming

Execute the loop test.

Is *find Equal to p?

© 2018 Steven S. Lumetta. All rights reserved. slide 35ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
x3998xE743

stack

p
x8424xE748

*find is
x6770

Continue Executing the Loop

What happens next?
for (find = &player_list;

p != *find;
find = &(*find)->next) {
if (NULL == *find) {

return 0;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 36ECE 220: Computer Systems & Programming

Execute the loop body.

3/27/2018

10

Is *find Equal to NULL?

© 2018 Steven S. Lumetta. All rights reserved. slide 37ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
x3998xE743

stack

p
x8424xE748

*find is
x6770

Continue Executing the Loop

What happens next?
for (find = &player_list;

p != *find;
find = &(*find)->next) {
if (NULL == *find) {

return 0;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 38ECE 220: Computer Systems & Programming

Execute the loop update.

Where is (*find)->next?

© 2018 Steven S. Lumetta. All rights reserved. slide 39ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
x3998xE743

stack

p
x8424xE748

*find is
x6770

Compiler Can Calculate Offsets for Each Field

struct player_t {
char* name;
char password[20];
int32_t age;
int32_t num_games;
int32_t score_dist[16];
struct game_t* game;
player_t* next;

};

© 2018 Steven S. Lumetta. All rights reserved. slide 40ECE 220: Computer Systems & Programming

+x00
+x01
+x15
+x17
+x19
+x39
+x3A

3/27/2018

11

Set find to &(*find)->next

© 2018 Steven S. Lumetta. All rights reserved. slide 41ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
x3998xE743

stack

p
x8424xE748

x67AA

x67AA

Continue Executing the Loop

And then …
for (find = &player_list;

p != *find;
find = &(*find)->next) {
if (NULL == *find) {

return 0;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 42ECE 220: Computer Systems & Programming

Back to the loop test.

Is *find Equal to p? What About NULL?

© 2018 Steven S. Lumetta. All rights reserved. slide 43ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
x67AAxE743

stack

p
x8424xE748

x67AA

*find is
x9924

Continue Executing the Loop

After the loop test and the loop body…
for (find = &player_list;

p != *find;
find = &(*find)->next) {
if (NULL == *find) {

return 0;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 44ECE 220: Computer Systems & Programming

Execute the loop update.

3/27/2018

12

Where is (*find)->next?

© 2018 Steven S. Lumetta. All rights reserved. slide 45ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
x67AAxE743

stack

p
x8424xE748

x67AA

*find is
x9924

x995E

Set find to &(*find)->next

© 2018 Steven S. Lumetta. All rights reserved. slide 46ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
x67AAxE743

stack

p
x8424xE748

x67AA x995E

x995E

Continue Executing the Loop

And then …
for (find = &player_list;

p != *find;
find = &(*find)->next) {
if (NULL == *find) {

return 0;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 47ECE 220: Computer Systems & Programming

Back to the loop test.

Is *find Equal to p? Yes! Loop Test Fails…

© 2018 Steven S. Lumetta. All rights reserved. slide 48ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
x995ExE743

stack

p
x8424xE748

x67AA x995E

*find is
x8424

3/27/2018

13

Overwrite *find with p->next

Here’s the code after the loop.

*find = p->next;

free (p->name);

free (p);

return 1;

}

Notice that we overwrite *find.

© 2018 Steven S. Lumetta. All rights reserved. slide 49ECE 220: Computer Systems & Programming

Set the Bits at *find to p->next

© 2018 Steven S. Lumetta. All rights reserved. slide 50ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x8424

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
x995ExE743

stack

p
x8424xE748

x67AA x995E
x0000

“Baddie” is No Longer in the List!

© 2018 Steven S. Lumetta. All rights reserved. slide 51ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x0000

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
x995ExE743

stack

p
x8424xE748

x67AA x995E

Finish the Rest of the Function

What’s next?

*find = p->next;

free (p->name);

free (p);

return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 52ECE 220: Computer Systems & Programming

Free the name, then player p.

3/27/2018

14

Free the Two Blocks of Dynamically Allocated Data

© 2018 Steven S. Lumetta. All rights reserved. slide 53ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

xABCDx8424

player

name

next x0000

x5783x9924

“Charlie”x5783 “Baddie”xABCD
heap

player_list
x6770x3998

global data

find
x995ExE743

stack

p
x8424xE748

x67AA x995E

1

2

The Function is Done

What’s next?

*find = p->next;

free (p->name);

free (p);

return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 54ECE 220: Computer Systems & Programming

Return success!

The List After the Function has Returned

© 2018 Steven S. Lumetta. All rights reserved. slide 55ECE 220: Computer Systems & Programming

“Gao”x8772

player

name

next x9924

x8772x6770

player

name

next x0000

x5783x9924

“Charlie”x5783
heap

player_list
x6770x3998

global data

stack

x67AA x995E

