3/27/2018

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Fully Dynamic Allocation

Summary of Dynamic Resizing Pros and Cons

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 1

dynamically resized array
ostart with small constant
omultiply size by a constant as necessary

pros

o easy to implement

carray uses contiguous memory
cons (quantified for 2x multiplier)
o copying cost (< 2N for N players)
owaste space (~38%)

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 2

Player Deletion with Dynamic Resizing

Allocating Individual Players Requires a Pointer for Each

What about deletion?

If order doesn’t matter,

o copy last element over deleted element,
othen reduce count

o (requires constant time).

If order matters, deletion can be expensive.

Can we use dynamic allocation
°to allocate one thing (a player) at a time
cinstead of resizing an array?

Yes, but first, we need to solve a problem:

o Every call tomalloc returns a pointer.

> These pointers have no predictable
relationship to one another.

°So we need to store a
pointer to each player.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 3

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 4

Where Can All the Pointers Go?

With dynamic resizing, we used one
player pointer in the global data area:

static player t* player list = NULL;
Where can we put more pointers?
We can use

°a dynamically resized array of pointers.

°But ... have we really solved the problem in
that case? (An array of pointers does
reducing copying and waste space.)

3/27/2018

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 5

Where Can We Put More Pointers?

Can we do something else?

player list mayer

player

player

player

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 6

Solution: Add a Pointer to the Player Struct!

What if we add a player_ t*
to the player struct?

player list

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 7

Mark the End of the List by Pointing to Nothing

What about the last player’s pointer?
Set it to NULL.

player list

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 8

3/27/2018

Singly-Linked Lists are Common for Unordered Groups

Inserting into a Singly-Linked List Requires Two Changes

The data structure shown

ois called a singly-linked list

o (or, frequently, just a linked list).

> Singly-linked lists are usually used when
order is not important.

How do we insert into a linked list?

o Specifically, where should we insert a
new element: at the start, or the end?

Insert at the start: it’s faster.

Make two changes. In what order?

player list

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 9

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 10

Correct Ordering of Changes is Important

First, change the next field of the new player.
Otherwise, the old list is lost!

new_player->next = player list;
player list = new_player;

That’s all.

How Can We Remove Player p from the List?

Need to change pointer
(link) marked in blue.

P

player list

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 11

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 12

Singly-Linked List Deletion is Linear in Size of List

3/27/2018

Deletion is slower:

°to delete player p

ofrom a list that starts at player list,
°we must walk over the list to find p,
-then change pointer to p to p->next.

In general,
owith N things in the list,
°owe examine on average N/2.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 13

Modify Player Structure to Use Dynamic Allocation

Before writing player delete,
clet’s modify our player structure
°to use dynamic allocation
ofor the name* field.

*We treated the password field as a normal
string before, but technically it should be
hashed or encrypted to a fixed-length string.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 14

Review: Example Player Structure

struct player t {
melhae—pame-fdfds char* name;

char password[20];

name
int32_t age; points to a
int32_t num games; dynamically
int32_t score_dist[16];| gjocated

struct game t* game; block of

player t* next; memory.

next is used for the linked list.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 15

Modify player init to Dynamically Allocate the Name

Then, in player_ init, we can write...
p->name = malloc (strlen (n) + 1);
if (NULL == p->name) { return 0; }
strcpy (p->name, n);

or
p->name = strdup (n);
if (NULL == p->name) { return 0; }

(recall that n is the new player’s name).

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 16

First, Remove Player to Be Deleted from the List

3/27/2018

Questions for you:
To delete “Y,” what needs to change?
The next field of player “Z.”

player list

= ¢ ¢

name ~ name ~ name ~

layer player player

Free All Dynamically Allocated Data for the Player

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 17

Questions for you:
What needs to be freed to delete “Y?”

Both the player structure and the name.

player list

= e

name ~ name ~ name ~
player player player
[CNULL]

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 18

Do Not Use Dynamic Data After Freeing It

Questions for you:
In what order?
First the name, then the player structure.

player list

B) g (W (i

name ~ name ~ name ~
player player player
[CNULL]

Ready to Write a Function to Delete a Player

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 19

Now we can write player delete.

The function signature is:
int32 t player delete (player t* p);
°p points to the player structure
to remove from the list and free
ofunction returns 1 on success, or 0 on failure

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 20

3/27/2018

for (find = g&player list;
p '= *find;

find = &(*find)->next) {

if (NULL == *find) {

return 0;

player t** find;

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 21

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 22

player t** find;
for (find = g&player list;

find = &(*find)->next)| {
if (NULL == *find) {
return O;

player t** find;
for (find = g&player list;
p '= *find;

if (NULL == *find) {
return 0;

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 23

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 24

3/27/2018

player t** find;
for (find = g&player list;
p '= *find;
find = &(*find)->next) {

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 25

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 26

Let’s do a detailed example

cof player delete execution

con a linked list of three players

owith variables shown in L.C-3 memory.

Let’s first identify where each variable
resides:

°in the global data area,
°in the heap, or
°in the stack.

The linked list is shown below (head on left).

Where are these data
(global data, heap, or stack)?

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 27

heap

x6770[name ' x8772] x9924[name ' x5783] x8424[name ! xABCD

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 28

File-Scope Variables Reside in the ...

The file-scope variable

player list

player_ list points to EERR
the head of the list.
Where is player list istored?
— global data
heap

x8772 “Gao”

x6770[name ' x8772] x9924[name ' x5783] x8424[name ! xABCD

player player f player

3/27/2018

Local Variables Reside in the ...

stack
find player list
xE743 x3998

And where is local
variable £ind?

— global data

ECE 220: Computer Systems & Programming 02

018 Steven S. Lumetta. All rights reserved.

slide 29

heap

%6770 name ' x8772| x9924[name ! x5783| x8424[name ' xABCD

player player f player

x8772 “Gao”

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 30

Parameter p is Close to Local Variable £ind

stack
find player list
xE743[bits | x3998
P
S N
N
P < global data

heap

%6770 name ' x8772] x9924[name ' x5783] x8424[name I xABCD
player [player f player

ECE 220: Computer Systems & Programming

© 2018 Steven S. Lumetta. All rights reserved.

slide 31

Start the Function by Initializing £ind

Here’s the loop again.
for (find = &player list;
p !'= *find;
find = &(*find)->next) {
if (NULL == *find) ({
return O;

} Start by initializing £ind.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 32

Initialize find to &player list

stack
find player list
XE743[b8 x3998
%3998
P
*eTeo IREHEEET N\
N
P < global data

heap

x6770[name ' x8772

x9924[name ' x5783] x8424[name !

xABCD

3/27/2018

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 33

Continue Executing the Loop

What happens next?
for (find = &player list;
p '= *find;
find = &(*£find)->next)
if (NULL == *find) ({
return O;

} Execute the loop test.

{

ECE 220: Computer Systems & Programming

© 2018 Steven S. Lumetta. All rights reserved.

slide 34

Is *£ind Equal to p?

stack
find player list
xE743[%3998 7 ——>x3998
) *find is
xms—"\ x6770
— \\ global data

heap

x6770[name ' x8772

x9924[name ' x5783] x8424[name !

xABCD

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 35

Continue Executing the Loop

What happens next?
for (find = &player list;
p '= *find;
find = &(*find)->next) {
if (NULL == *find) ({
return O;

} Execute the loop body.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 36

Is *£ind Equal to NULL?

stack
find player list
xE743[%3998 7 ——>x3998
) *find is
xms—"\ x6770
— \\ global data

heap

x6770[name " x8772] x9924[name ' x5783] x8424[name '

xABCD

3/27/2018

ECE 220: Computer Systems & Programming

© 2018 Steven S. Lumetta. All rights reserved.

slide 37

Continue Executing the Loop

What happens next?
for (find = &player list;
p '= *find;
find = &(*£find)->next) {
if (NULL == *find) ({
return O;

} Execute the loop update.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 38

Where is (*£ind) ->next?

stack
find player list
xE743[%3998 7 ——>x3998
) *find is
xms—"\ x6770
— \\ global data

heap

x6770[name " x8772] x9924[name ' x5783] x8424[name '

xABCD

ECE 220: Computer Systems & Programming

© 2018 Steven S. Lumetta. All rights reserved.

slide 39

Compiler Can Calculate Offsets for Each Field

struct player t {

+X00 char* name;

+x01 char password[20];

+x15 int32_t age;

+x17 int32_t num _games;

+x19 int32_t score_dist[16];
+x39 struct game_t* game;

+x3A player_ t* next;

};

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 40

1N

Set £ind to & (*find) ->next

stack

player list
> x3998

\\ global data

heap

x6770[name ' x8772] x9924[name ' x5783] x8424[name ! xABCD
player f player

3/27/2018

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 41

Continue Executing the Loop

And then ...
for (find = &player list;
p !'= *find;
find = &(*£find)->next) {
if (NULL == *find) {
return O;

} Back to the loop test.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 42

Is *£ind Equal to p? What About NULL?

find stack 1 list
ing = = player lis
XE743 *find is %3998
x9924
P
S
N
[~ < global data

heap

x6770[name ' x8772] x9924[name ' x5783] x8424[name ! xABCD
player f player

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 43

Continue Executing the Loop

After the loop test and the loop body...
for (find = &player list;
p !'= *find;
find = &(*find)->next) {
if (NULL == *find) ({
return O;

} Execute the loop update.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 44

11

Where is (*£ind) ->next?

find stack 1 list
in = = player_lis
XE743 *find is %3998

x9924

P
S
|

\\ global data

heap

x6770 name " %8772

x9924[name ' x5783| x8424[name !

xABCD!

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 45

3/27/2018

Set £ind to & (*find) ->next

stack

find

player list
x3998

\\ global data

heap

x9924[name ' x5783| x8424[name !

x6770 name " %8772

xABCD!

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 46

Continue Executing the Loop

And then ...
for (find = &player list;
p !'= *find;
find = &(*find)->next) {
if (NULL == *find) {
return O;

} Back to the loop test.

Is *£ind Equal to p? Yes! Loop Test Fails...

stack
find player list
xE743[_x995E A %3998
P *find is
xXE748 x8424
P 7 \\ global data

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 47

heap

x9924[name ' x5783| x8424[name !

x6770 name " %8772

xABCD!

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 48

19

Overwrite *£ind with p->next
Here’s the code after the loop.
*find = p->next;
free (p->name) ;

free (p):
return 1;

Notice that we overwrite *£ind.

3/27/2018

Set the Bits at *£ind to p->next

stack
find player list
xE743[_x995E A %3998
P
xE748
N
P 7 < global data

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 49

heap

x6770[name " x8772||x9924[name ' x5783| x8424[name '

xABCD!

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 50

“Baddie” is No Longer in the List!

stack
find player list
xE743[_x995E A %3998
P
xE748
N
P 7 < global data

heap

x6770[name " x8772||x9924[name ' x5783| x8424[name '

xABCD!

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 51

Finish the Rest of the Function
What’s next?

*find = p->next;
free (p->name);
free (p):
return 1;

Free the name, then player p.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 52

12

3/27/2018

Free the Two Blocks of Dynamically Allocated Data
stack
find player list
xE743[x995E 4 x3998
P
xE748
N

— 7 < global data
heap
x8772[«Ggo” x5'783 mcnm

x6770[name " x8772]|x9924/name ' x5783| x8424 e ' xAB

The Function is Done

What’s next?

*find = p->next;
free (p->name) ;
free (p):
return 1;

Return success!

ECE 220: Computer Systems & Programming

slide 53

© 2018 Steven S. Lumetta. All rights reserved.

ECE 220: Computer Systems & Programming

© 2018 Steven S. Lumetta. All rights reserved.

slide 54

The List After the Function has Returned

stack

player list
x3998

global data

—

heap

x6770[name " x8772] x9924[name ' x5783

ECE 220: Computer Systems & Programming

©2018 Steven S. Lumetta. All rights reserved. slide 55

11

