3/15/2018

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Dynamic Resizing

Programmers Rarely Know How to Size an Array

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 1

Allocation of arrays
°at compile time (static allocation)
o forces programmer to choose array size.

Often, there’s no good way to choose.

For example,
°chow many players do we need
ofor First International Blocky Server?

10? 10,000? 10,000,000?

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 2

Dynamic Resizing Grows Array to Fit Demand

How Much Copying is Needed for Dynamic Resizing?

One solution to this dilemma

is called dynamic resizing:
°Start with 10 players.

- If we need > 10, change to 20.
- If we need > 20, change to 40.
> And so forth.

Each time we grow the array
o existing players must be copied
oto the new array.

Before we see how it works,

°it’s worth asking:

-how expensive is the copying?
We can bound it:

-if we have N players in the array,

othe last copy copied at most N players,*
oand the previous copy copied at most N/2,
oand the one before that, at most N/4.

*Technically (N — 1), but we're finding an upper bound anyway.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 3

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 4

Resizing Copies at Most Twice the Number of Players

3/15/2018

In other words,

owith N players, we copy at most

oN (1 + %+ % +...) players.

In the infinite limit,*

owe have at most 2N players copied, or

c2 copies per player in the array.
That’s not too bad.

*The number of times that the array grows is finite,
but, again, we want a bound.

How Much Space is Wasted with Dynamic Resizing?

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 5

What about wasted space?
Dynamic resizing always
°multiplies the size of the array,
50 there’s usually a lot of empty space.

Note that if one
cextends the array by adding a fixed amount,
°copying cost is quadratic in N, not linear.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 6

Assume Uniform Distribution Between Powers of 2

To answer, we must make an assumption
about the likelihood of various values of N.
Let’s do this:
o For simplicity, assume that we start with 1.
> Any value of N falls between two powers
of 2: 2k-1 < N < 2k for some integer k.
°cWe assume that values of N are evenly
distributed in each such interval.

Waste Space Needs to be Averaged

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 7

The figure to the right k-1 S
illustrates the problem. |

When 251 <N < 2k we |
allocate 2k to hold N. | |

The amount of waste space is 2% — N.

In terms of the amount of space needed (N)
> dynamic resizing wastes another 2¥/N - 1.
- Now we need to average.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 8

3/15/2018

Integrate to Find Expected Waste

Dynamic Resizing Adds ~38% Extra Space on Average

The assumption of 9k-1 D

uniformity gives us a | N aste |
factor of (2K1)1, |

Integrating over the
interval shown gives us

_ 1 2k 2k
Expected waste = ;— 2,{_1(? -1) dN

The -1 averages to -1, of course.

The first term averages to 2 In 2.

Putting those two terms together gives

Expected waste =2 (In 2 - %)
which is about 38%.

(Probably not too important.)

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 9

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 10

We Need Dynamic Allocation for Dynamic Resizing

malloc Allocates a New Chunk of Memory

One last thing before we can write the code:
othe standard C library
o dynamic allocation functions

°(#include <stdlib.h> for these).

The most basic call is
void* malloc (size_t size);
size is the number of bytes needed.

malloc returns

ca pointer to a new chunk of memory
(from the heap), or

e NULL on failure (memory not available).

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 11

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 12

3/15/2018

void* is a Pointer to Nothing

Pitfall: Assuming 0 Bits in New Memory

void* malloc (size_t size);
But what is type void*?

Type void*
°(a pointer to nothing)

°is auto-converted to/from
any pointer type

owithout generating a warning.
Do not use it for pointer arithmetic.
Do not dereference it.

What’s in the new chunk of memory
returned from malloc?

Bits!
They may be 0 bits.

Unfortunately,
othey’re likely to be 0 bits
°if you do a little bit of testing.

In general, however, they are bits.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 13

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 14

calloc Allocates a Zeroed Chunk of Memory

calloc Allocates a New Chunk of Memory

If you want 0 bits, use
void* calloc (size_t num elts,
size_t elt_size);
The number of bytes needed is
the product of the two arguments.

(Originally, calloc was probably
meant for arrays.)

void* calloc (size_t num elts,
size t elt_size);
As with malloc, calloc returns

ca pointer to a new chunk of memory
(from the heap), or

e NULL on failure (memory not available).

The memory returned from
calloc is filled with 0 bits.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 15

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 16

3/15/2018

realloc Resizes a Chunk of Memory

realloc Returns a Chunk of Memory

The third function is

void* realloc (void* ptr,
size t size);

This function is used to change the size
of an allocated block of memory.

size is the new number of bytes needed.

ptr must be a dynamically allocated block
(a value returned from malloc, calloc, or
realloc).

void* realloc (void* ptr,
size t size);
realloc attempts
o to grow/shrink the block,
o as requested.

Caller need not know (nor pass) the original size.

As with malloc and calloc, realloc returns

> a pointer to a chunk of memory
(from the heap), or

> NULL on failure (memory not available).

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 17

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 18

realloc Copies and Frees When Necessary

free Frees a Chunk of Memory

void* realloc (void* ptr,
size_ t size);
The value returned from realloc
may or may not be the same as ptr.

If they differ,
cdata will be copied from the
old block to the new block,

oand the old block will be freed.

When your program is done with a block of
dynamically allocated memory, you should call

void free (void* ptr);

ptr must be a dynamically allocated
block (a value returned from malloc,
calloc, or realloc).

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 19

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 20

3/15/2018

Rules for Dynamic Allocation

Overloading Meaning: realloc

Be sure to follow the rules when using
dynamically allocated memory:

1. Do not read/write memory locations
before/after a block.

2. Call free exactly once on each block.

3. Do not call free on any other pointer,
including pointers into a block.

4. Do not access (read, nor write) a
block after freeing it.

I mentioned earlier that one should avoid
overloading function meaning for no reason.

realloc is a good example.

Can’t remember malloc’s name?
Just use realloc (NULL, size)!
Can’t remember free’s name?

Just use realloc (ptr, 0)!

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 21

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 22

File Scope Variables for Dynamic Resizing

Now we're ready to write code.
We will need some file-scope variables:
static player t* player list = NULL;

static int32_t num players = 0;
static int32_t max players = 10;

player list is the array. We cannot
statically initialize it to a dynamic block.

Write player create Using Dynamic Resizing

We will write
int32 t player create (char* n,
char* pswd, int32 t p age,
player t** new p);
which uses dynamic resizing
°to find a free array element,
cinitialize it using player_ init, and
ereturn a pointer in *new_p.

The return value is
1 for success, 0 for failure.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 23

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 24

int32_t player create

player t* new_copy;

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 25

player list = realloc
(player list,
2 * max players *

sizeof (*player list));

// What’s wrong with this code?

max player *= 2; Grow .
} player list.
ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 27

3/15/2018

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 26

If your code calls realloc this way:

ptr = realloc (ptr, new_size);
and realloc fails,

the address of your old block is gone!

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 28

Instead, create a temporary:

thing t* new_copy’
new_copy = realloc (ptr, new_size);
if (NULL !'= new_copy) {

ptr = new_copy;

if

new_copy = realloc (player list,
2 * max players *
sizeof (*player list));

if (NULL == new_copy) {
return 0;

}
max player *= 2;
player list = new_copy;

3/15/2018

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 29

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 30

if (max players == num players) {

if (NULL == new_copy) {
return O;

}
max player *= 2;
player list = new_copy;

if (max players == num players) {
new_copy = realloc (player list,

2 * max players ¥
sizeof (*player 1list));

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 31

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 32

if (0 == player init (*new _p, n,

return 0;
}
num_players++;
return 1;
} // end of function

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 33

3/15/2018

&player list[num players];

if

} // end of function

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 34

