
3/15/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems & 
Programming

Dynamic Resizing

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta.  All rights reserved. slide 1

Programmers Rarely Know How to Size an Array

Allocation of arrays
◦at compile time (static allocation)
◦ forces programmer to choose array size.

Often, there’s no good way to choose.

For example,
◦how many players do we need
◦ for First International Blocky Server?

10?

© 2018 Steven S. Lumetta.  All rights reserved. slide 2ECE 220: Computer Systems & Programming

10,000? 10,000,000?

Dynamic Resizing Grows Array to Fit Demand

One solution to this dilemma 
is called dynamic resizing:
◦Start with 10 players.
◦ If we need > 10, change to 20.
◦ If we need > 20, change to 40.
◦And so forth.

Each time we grow the array
◦ existing players must be copied
◦ to the new array.

© 2018 Steven S. Lumetta.  All rights reserved. slide 3ECE 220: Computer Systems & Programming

How Much Copying is Needed for Dynamic Resizing?

Before we see how it works,
◦ it’s worth asking: 
◦how expensive is the copying?

We can bound it:
◦ if we have N players in the array,
◦ the last copy copied at most N players,*
◦and the previous copy copied at most N/2,
◦and the one before that, at most N/4.
*Technically (N – 1), but we’re finding an upper bound anyway.

© 2018 Steven S. Lumetta.  All rights reserved. slide 4ECE 220: Computer Systems & Programming



3/15/2018

2

Resizing Copies at Most Twice the Number of Players

In other words,
◦with N players, we copy at most
◦N (1 + ½ + ¼ + …) players.

In the infinite limit,*
◦we have at most 2N players copied, or 
◦2 copies per player in the array.

That’s not too bad.
*The number of times that the array grows is finite,

but, again, we want a bound.

© 2018 Steven S. Lumetta.  All rights reserved. slide 5ECE 220: Computer Systems & Programming

How Much Space is Wasted with Dynamic Resizing?

What about wasted space?

Dynamic resizing always
◦multiplies the size of the array,
◦ so there’s usually a lot of empty space.

Note that if one
◦ extends the array by adding a fixed amount,
◦ copying cost is quadratic in N, not linear.

© 2018 Steven S. Lumetta.  All rights reserved. slide 6ECE 220: Computer Systems & Programming

Assume Uniform Distribution Between Powers of 2

To answer, we must make an assumption 
about the likelihood of various values of N.

Let’s do this:
◦For simplicity, assume that we start with 1.
◦Any value of N falls between two powers 
of 2: 2k-1 < N ≤ 2k for some integer k.

◦We assume that values of N are evenly 
distributed in each such interval.

© 2018 Steven S. Lumetta.  All rights reserved. slide 7ECE 220: Computer Systems & Programming

Waste Space Needs to be Averaged

The figure to the right
illustrates the problem.

When 2k-1 < N ≤ 2k, we
allocate 2k to hold N.

The amount of waste space is 2k – N.

In terms of the amount of space needed (N)
◦dynamic resizing wastes another 2k/N – 1.
◦Now we need to average.

© 2018 Steven S. Lumetta.  All rights reserved. slide 8ECE 220: Computer Systems & Programming

2k-1 2k

N waste



3/15/2018

3

Integrate to Find Expected Waste

The assumption of 
uniformity gives us a
factor of (2k-1)-1.

Integrating over the
interval shown gives us

Expected waste = 
𝟏

𝟐𝒌 𝟏 ∫ (
𝟐𝒌

𝑵

𝟐𝒌

𝟐𝒌 𝟏 - 1) dN

The -1 averages to -1, of course.

The first term averages to 2 ln 2.

© 2018 Steven S. Lumetta.  All rights reserved. slide 9ECE 220: Computer Systems & Programming

2k-1 2k

N waste

Dynamic Resizing Adds ~38% Extra Space on Average

Putting those two terms together gives

Expected waste = 2 (ln 2 – ½)

which is about 38%.

(Probably not too important.)

© 2018 Steven S. Lumetta.  All rights reserved. slide 10ECE 220: Computer Systems & Programming

We Need Dynamic Allocation for Dynamic Resizing

One last thing before we can write the code:

◦ the standard C library 

◦dynamic allocation functions

◦ (#include <stdlib.h> for these).

© 2018 Steven S. Lumetta.  All rights reserved. slide 11ECE 220: Computer Systems & Programming

malloc Allocates a New Chunk of Memory

The most basic call is

void* malloc (size_t size);

size is the number of bytes needed.

malloc returns
◦a pointer to a new chunk of memory 
(from the heap), or

◦NULL on failure (memory not available).

© 2018 Steven S. Lumetta.  All rights reserved. slide 12ECE 220: Computer Systems & Programming



3/15/2018

4

void* is a Pointer to Nothing

void* malloc (size_t size);

But what is type void*?
Type void*
◦ (a pointer to nothing) 
◦ is auto-converted to/from 
any pointer type 

◦without generating a warning.

Do not use it for pointer arithmetic.
Do not dereference it.

© 2018 Steven S. Lumetta.  All rights reserved. slide 13ECE 220: Computer Systems & Programming

Pitfall: Assuming 0 Bits in New Memory

What’s in the new chunk of memory 
returned from malloc?

Bits!

They may be 0 bits.

Unfortunately,
◦ they’re likely to be 0 bits
◦ if you do a little bit of testing.

In general, however, they are bits.

© 2018 Steven S. Lumetta.  All rights reserved. slide 14ECE 220: Computer Systems & Programming

calloc Allocates a Zeroed Chunk of Memory

If you want 0 bits, use

void* calloc (size_t num_elts,
size_t elt_size);

The number of bytes needed is 
the product of the two arguments.

(Originally, calloc was probably 
meant for arrays.)

© 2018 Steven S. Lumetta.  All rights reserved. slide 15ECE 220: Computer Systems & Programming

calloc Allocates a New Chunk of Memory

void* calloc (size_t num_elts,
size_t elt_size);

As with malloc, calloc returns
◦a pointer to a new chunk of memory 
(from the heap), or

◦NULL on failure (memory not available).

The memory returned from 
calloc is filled with 0 bits.

© 2018 Steven S. Lumetta.  All rights reserved. slide 16ECE 220: Computer Systems & Programming



3/15/2018

5

realloc Resizes a Chunk of Memory

The third function is

void* realloc (void* ptr,
size_t size);

This function is used to change the size 
of an allocated block of memory.

size is the new number of bytes needed.

ptr must be a dynamically allocated block 
(a value returned from malloc, calloc, or 
realloc).

© 2018 Steven S. Lumetta.  All rights reserved. slide 17ECE 220: Computer Systems & Programming

realloc Returns a Chunk of Memory

void* realloc (void* ptr,
size_t size);

realloc attempts 
◦ to grow/shrink the block, 
◦ as requested.

Caller need not know (nor pass) the original size.
As with malloc and calloc, realloc returns
◦ a pointer to a chunk of memory 
(from the heap), or

◦ NULL on failure (memory not available).

© 2018 Steven S. Lumetta.  All rights reserved. slide 18ECE 220: Computer Systems & Programming

realloc Copies and Frees When Necessary

void* realloc (void* ptr,
size_t size);

The value returned from realloc
may or may not be the same as ptr.

If they differ, 
◦data will be copied from the 
old block to the new block,

◦and the old block will be freed.

© 2018 Steven S. Lumetta.  All rights reserved. slide 19ECE 220: Computer Systems & Programming

free Frees a Chunk of Memory

When your program is done with a block of 
dynamically allocated memory, you should call

void free (void* ptr);

ptr must be a dynamically allocated 
block (a value returned from malloc, 
calloc, or realloc).

© 2018 Steven S. Lumetta.  All rights reserved. slide 20ECE 220: Computer Systems & Programming



3/15/2018

6

Rules for Dynamic Allocation

Be sure to follow the rules when using 
dynamically allocated memory:
1. Do not read/write memory locations

before/after a block.
2. Call free exactly once on each block.
3. Do not call free on any other pointer,

including pointers into a block.
4. Do not access (read, nor write) a 

block after freeing it.

© 2018 Steven S. Lumetta.  All rights reserved. slide 21ECE 220: Computer Systems & Programming

Overloading Meaning: realloc

I mentioned earlier that one should avoid 
overloading function meaning for no reason.

realloc is a good example.

Can’t remember malloc’s name?

Just use realloc (NULL, size)!

Can’t remember free’s name?

Just use realloc (ptr, 0)!

© 2018 Steven S. Lumetta.  All rights reserved. slide 22ECE 220: Computer Systems & Programming

File Scope Variables for Dynamic Resizing

Now we’re ready to write code.

We will need some file-scope variables:

static player_t* player_list = NULL;

static int32_t num_players = 0;

static int32_t max_players = 10;

player_list is the array.  We cannot 
statically initialize it to a dynamic block.

© 2018 Steven S. Lumetta.  All rights reserved. slide 23ECE 220: Computer Systems & Programming

Write player_create Using Dynamic Resizing

We will write
int32_t player_create (char* n,

char* pswd, int32_t p_age, 
player_t** new_p);

which uses dynamic resizing
◦ to find a free array element,
◦ initialize it using player_init, and
◦return a pointer in *new_p.

The return value is 
1 for success, 0 for failure.

© 2018 Steven S. Lumetta.  All rights reserved. slide 24ECE 220: Computer Systems & Programming



3/15/2018

7

Assert
requirements.

to store new
player_t*

for player_init

Check Arguments Before Trying to Create Player

int32_t player_create
(char* n, char* pswd, 
int32_t p_age, 
player_t** new_p)

{
player_t* new_copy;

ASSERT (NULL != name);
ASSERT (NULL != pswd);
ASSERT (NULL != new_p);

© 2018 Steven S. Lumetta.  All rights reserved. slide 25ECE 220: Computer Systems & Programming

No array yet?

Try to create array.
No memory?  Give up.

First Case: First Time player_create is Called

if (NULL == player_list) {
player_list =

malloc (max_players * 
sizeof (*player_list));

if (NULL == player_list) {
return 0;

}
} else ...

© 2018 Steven S. Lumetta.  All rights reserved. slide 26ECE 220: Computer Systems & Programming

Grow
player_list.

Array
full?

Second Case: Array is Currently Full

if (max_players == num_players) {
player_list = realloc

(player_list,
2 * max_players * 
sizeof (*player_list));

// What’s wrong with this code?

max_player *= 2;
}

© 2018 Steven S. Lumetta.  All rights reserved. slide 27ECE 220: Computer Systems & Programming

Pitfall: Using realloc without a Temporary

If your code calls realloc this way:

ptr = realloc (ptr, new_size);

and realloc fails, 

the address of your old block is gone!

© 2018 Steven S. Lumetta.  All rights reserved. slide 28ECE 220: Computer Systems & Programming



3/15/2018

8

Use a Temporary Variable When Calling realloc

Instead, create a temporary:

thing_t* new_copy;

new_copy = realloc (ptr, new_size);

if (NULL != new_copy) {

ptr = new_copy;

}

© 2018 Steven S. Lumetta.  All rights reserved. slide 29ECE 220: Computer Systems & Programming

Array
full?

Second Case: Array is Currently Full

if (max_players == num_players) {
new_copy = realloc (player_list,

2 * max_players * 
sizeof (*player_list));

if (NULL == new_copy) {
return 0;

}
max_player *= 2;
player_list = new_copy;

}

© 2018 Steven S. Lumetta.  All rights reserved. slide 30ECE 220: Computer Systems & Programming

Grow 
player_list.

Second Case: Array is Currently Full

if (max_players == num_players) {
new_copy = realloc (player_list,

2 * max_players * 
sizeof (*player_list));

if (NULL == new_copy) {
return 0;

}
max_player *= 2;
player_list = new_copy;

}

© 2018 Steven S. Lumetta.  All rights reserved. slide 31ECE 220: Computer Systems & Programming

Update variables to reflect new size and place.

Out of 
memory?
Give up.

Second Case: Array is Currently Full

if (max_players == num_players) {
new_copy = realloc (player_list,

2 * max_players * 
sizeof (*player_list));

if (NULL == new_copy) {
return 0;

}
max_player *= 2;
player_list = new_copy;

}

© 2018 Steven S. Lumetta.  All rights reserved. slide 32ECE 220: Computer Systems & Programming



3/15/2018

9

next free player in array

Fill in the New Player Struct

*new_p = 
&player_list[num_players];

if (0 == player_init (*new_p, n,
pswd, p_age)) {

return 0;
}
num_players++;
return 1;

} // end of function    

© 2018 Steven S. Lumetta.  All rights reserved. slide 33ECE 220: Computer Systems & Programming

Try to initialize.

Failed?  Give up.

Increment players
and return success.

Fill in the New Player Struct

*new_p = 
&player_list[num_players];

if (0 == player_init (*new_p, n,
pswd, p_age)) {

return 0;
}
num_players++;
return 1;

} // end of function    

© 2018 Steven S. Lumetta.  All rights reserved. slide 34ECE 220: Computer Systems & Programming


