
3/10/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Defining New Types

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Use typedef to Define New Types

It gets a bit tiresome to keep
writing struct everywhere.
Instead, we can create new types by writing
typedef <base type> <list of types>;

The typedef statement looks just like a
variable declaration,
◦ except that it starts with typedef, and
◦new types are defined
(instead of variables).

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Typical Uses of typedef

The most common forms are…
typedef struct player_t Player;

or
typedef struct player_t player_t;

Note that
1. the same name can be used

(without struct), and
2. the structure definition need not

appear before these definitions.

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

Information Hiding: Split Type and Structure Definitions

Only functions that
◦ implement operations on a data structure
◦need the structure definition.

To hide the implementation,
a header file can include
typedef struct player_t player_t;
◦ to allow other code to use player_t*,
◦while the structure definition and all
operations are in a single file.

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

3/10/2018

2

A Structure Definition Can Be Used as a Type

A structure definition (without a semicolon)
◦struct { … }
◦ is also a type.
◦Such a type has no name.

But it can be used to declare variables:

struct { … } my_structure;

And it can be given a name:

typedef struct { … } my_type_t;

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Structure Definition and typedef can be Merged

You may sometimes see a named structure
definition merged with a typedef:

typedef struct player_t {

...

} Player;

With the form above,
◦ player_t* cannot be used
in the structure definition;

◦ instead, use struct player_t*.
◦ And the two cannot be split, of course.

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Pitfall: Saving Typing at the Expense of Code Readability

Do not define types
◦ to save a little typing
◦ at the expense of clear code.

For example,
typedef int* Int;

What’s the problem?
some_function (x, y);

Do x and y change?
*The pointers do not change, of course, but

the data are the things to which the pointers point.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Maybe…*

Enumerating Possibilities with enum is Also Useful

Another useful type: enumerations.

What’s an enumeration?
1. a list of things
2. with some common feature
3. numbered consecutively.

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

3/10/2018

3

Enumerations Start with 0 in C

In C, enumerations
◦ start with 0, but
◦can be overridden.

For example, given

enum {FALSE, TRUE};
◦FALSE has value 0, and
◦TRUE has value 1.

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Values are Numbered (and Re-Numbered) Automatically

We count the number of values by
adding an extra name at the end:

enum {
SPACE_EMPTY,
SPACE_FULL,
SPACE_BLOCK,
NUM_SPACE_TYPES

};
If new names are added,
◦ NUM_SPACE_TYPES grows automatically
◦ along with any arrays based on it.

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

Enumerations Can Also Be Used for Bit Vectors

Enumerations can also be used
to name bits in a bit vector:
enum {

LEFT_WALL = 1,
RIGHT_WALL = 2,
UPPER_WALL = 4,
LOWER_WALL = 8,
HAS_EXIT = 16

};
Notice how the default values can be overridden.

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

