
3/10/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Developing a Data Structure

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Let’s Develop a Data Structure

Let’s develop a data structure together.

When I was in graduate school,

and the Internet was new

we played backgammon on FIBS,

the First International Backgammon Server.

It was fun!

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

(not really),

Let’s Build the First International Blocky Server!

I’m thinking that our MP6 could be big.
I see ten
people flocking to a server

to play,
to watch master players play,

and to hang out
and talk about Blocky strategy.

I’m serious!

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

a hundred a million

Start with Some Brainstorming

Let’s start with some brainstorming:
◦What aspects/information do we want
about each player?

◦What aspects/information do we want
about each game?

◦What information about players and games
should we record outside of our functions?

◦What functions should we define
to operate on a player structure?

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

3/10/2018

2

What Do We Need to Know about a Player?

What aspects/information do we want
about each player?

For example,
◦name
◦password
◦age
◦# of game played
◦distribution of scores
◦game in progress

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

These will
become fields
in our player

structure.

What Do We Need to Know about a Game?

What aspects/information do we want
about each game?

For example
◦ current board
◦ current score
◦ current piece type, position,
orientation

◦next piece type (for hints)
◦player

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

These will
become fields
in our game

structure.

What Information Persists Outside of Functions?

What information about players and
games should we record
outside of our functions?

For example,
◦# of players
◦array of player structures
◦# of players online now
◦# of games in progress
◦array of game structures

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

These will
become

file-scope
variables.

What Operations Do We Need for a Player?

What functions should we define to
operate on a player structure?

For example,
◦player_init
◦player_new_game
◦player_finish_game
◦player_delete

We could ask the same question about games,
but let’s start writing code instead.

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

These will be
written into a single

file, perhaps
player.c.

3/10/2018

3

Need a Method for Recording Scores

How will we track score distribution?
With a histogram.

I had some space left on this slide,
and I was feeling curious…

Do you know why
◦most currencies in the world
◦are numbered 1, 2, 5, 10, 20, 50,
◦and so forth?

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Create Bins with Equal Logarithmic Spacing

Equal logarithmic spacing:
◦ start with powers of 10,
◦ then subdivide into thirds, and
◦ round to usable values (×2, ×2.5, ×2).
◦Then you have
◦1, 2, 5, 10, or
◦1, 2.5, 5, 10, or
◦1, 2, 4, 10
◦ (the last seems rarer for some reason).

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

Use 16 Bins to Record a Player’s Scores

Let’s say that scores can range from 10s to
billions and use the following scheme:
score < 20,000 bin 0
20,000 ≤ score < 50,000 bin 1
50,000 ≤ score < 100,000 bin 2
…
1,000,000,000 ≤ score bin 15

Sixteen bins total.

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

Example Player Structure

struct player_t {

char name[32];

char password[20];

int32_t age;

int32_t num_games;

int32_t score_dist[16];

struct game_t* game;

};

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

Must choose a
type for each

field…

…and a size
for each array.

3/10/2018

4

Example Game Structure

struct game_t {
space_type_t board

[BOARD_HEIGHT][BOARD_WIDTH];
piece_type_t cur_piece;
int32_t cur_x;
int32_t cur_y;
int32_t cur_orient;
piece_type_t next_piece;
struct player_t* player;

};

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

Can Two Structures Have Pointers to One Another?

But can
a struct player_t include

a struct game_t* field

and
a struct game_t include

a struct player_t* field

at the same time?
Yes, both are pointers,

and both sizes are known!

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

Example of File-Scope Variables

// in player.c

static int32_t n_players = 0;

static struct player_t players[100];

static int32_t n_players_online = 0;

// in game.c

static int32_t n_games = 0;

static struct game_t games[100];

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

First Function: player_init to Initialize a Player

Let’s start with
◦a function to initialize a player.
◦Call it player_init.

One parameter is a struct player_t*.
The return value?
Let’s say an int32_t:
0 for failure, 1 for success.

What information do we need for
initialization?

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

3/10/2018

5

Initialize to
0 / NULL.

Pass into init
function.

Do We Need Extra Data to Initialize Any Fields?

struct player_t {

char name[32];

char password[20];

int32_t age;

int32_t num_games;

int32_t score_dist[16];

struct game_t* game;

};

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

the player

name

password age

Writing the Player Initialization Function

int32_t player_init
(struct player_t* p,
const char* name,
const char* pswd, int32_t p_age)

{
int32_t i;
for (i = 0; 31 > i && '\0' != name[i];

i++) {
p->name[i] = name[i];

}
p->name[i] = '\0';

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

Terminate with NUL.

Copy up to
31 characters.

Writing the Player Initialization Function

int32_t player_init
(struct player_t* p,
const char* name,
const char* pswd, int32_t p_age)

{
int32_t i;
for (i = 0; 31 > i && '\0' != name[i];

i++) {
p->name[i] = name[i];

}
p->name[i] = '\0';

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

Make Choices to Reduce Likelihood of Bugs

What happens
◦ in the function so far
◦ if one writes name instead of p->name?
◦Or if one writes p->name instead of name?

The compiler can’t help you.

Avoid using field names as arguments.

Then the compiler can help
if you make a mistake.

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

3/10/2018

6

Modified Player Initialization Function (Changes in Blue)

int32_t player_init
(struct player_t* p,
const char* n,
const char* pswd, int32_t p_age)

{
int32_t i;
for (i = 0; 31 > i && '\0' != n[i];

i++) {
p->name[i] = n[i];

}
p->name[i] = '\0';

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

Copy up to
19 characters.

Terminate with NUL.Copy age into
player struct.

Finish Initializing Fields Based on Parameters

for (i = 0;
19 > i && '\0' != pswd[i];
i++) {
p->password[i] = pswd[i];

}
p->name[i] = '\0';
p->age = p_age;

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

Return
success.

no game being played

no scores yet

no games
played yet

Initialize Remaining Fields with Constant Values

p->num_games = 0;
for (i = 0; 16 > i; i++) {

p->score_dist[i] = 0;
}
p->game = NULL;
return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

Let’s Write Two More Functions for Players

Let’s also write
◦player_new_game, for when
a player starts a game, and

◦player_finish_game, for when
a player finishes a game.

Both will take a struct player_t*
as one parameter.

Both will return an int32_t:
0 for failure, 1 for success.

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

3/10/2018

7

Start with error
checking: is the
player already

in a game?

the new
game

the player

A Player Starts a New Game? Call player_new_game.

int32_t player_new_game
(struct player_t* p,
struct game_t* g)

{
if (NULL != p->game) {

return 0;
}
p->game = g;
p->num_games++;
return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

Return
success.

Update fields
as necessary
to reflect new
game starting.

A Player Starts a New Game? Call player_new_game.

int32_t player_new_game
(struct player_t* p,
struct game_t* g)

{
if (NULL != p->game) {

return 0;
}
p->game = g;
p->num_games++;
return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

the score of the
finished game

the player

A Player Finishes a Game? Call player_finish_game.

int32_t player_finish_game
(struct player_t* p,
int32_t score)

{
if (NULL == p->game) {

return 0;
}
p->game = NULL;
p->score_dist[score_to_bin (score)]++;
return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

Use a helper function
to find the right bin.

Return
success.

Start with error
checking: is the

player not
in a game?

Update game field.

A Player Finishes a Game? Call player_finish_game.

int32_t player_finish_game
(struct player_t* p,
int32_t score)

{
if (NULL == p->game) {

return 0;
}
p->game = NULL;
p->score_dist[score_to_bin (score)]++;
return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

3/10/2018

8

Map a Score into a Score Distribution Histogram Bin

int32_t score_to_bin (int32_t score)
{

int32_t bin = 0;
score /= 10000;
while (15 > bin) {

// test for one power of 10
bin += 3;
score /= 10;

}
return bin;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

Each loop iteration
tests one power of

10 (three bins).

Find Position within Power of 10

if (2 > score) { return bin; }
if (5 > score) { return bin + 1; }
if (10 > score) { return bin + 2; }

© 2018 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

In the first iteration,
score has been divided
by 10,000 and bin is 0.

In the second iteration,
score has been divided
by 100,000 and bin is 3.

