
3/7/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Structured Data in C

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Sometimes, Knowing Which Thing is Enough

In MP6,
◦we represented the current piece type
◦with a small integer
◦ (a bit pattern).

Sometimes,
◦ such a representation suffices:
◦ in MP6, we just needed to know which piece.

ECE120 treated all representations that way.

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Often Want to Group Data Together Conceptually

More frequently, we want
◦ to record several pieces of information
about a given thing,

◦and to group these data together
conceptually.

Examples:
◦LC-3 instructions encode several fields.
◦MP2 and MP3 used “events” (a name, a set
of days, and a time or set of times).

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

How Does One Describe a Book?

Imagine that you want to
◦ track your personal library
◦as an app on your phone.

What do you want to know about a book?

author

title

ISBN

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

length (in pages)

price

edition

3/7/2018

2

Can Also Define Operations on a Group of Data

In addition to grouping information,
◦we associate operations (functions)
◦with such a grouping.

For example, in MP2 and MP3, you wrote
◦ event insertion into a schedule,
◦ selecting a possible hour for an event, and
◦ event deletion from a schedule
(for popping the stack in MP3).

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

What Can One Do with a Book?

Given information about a book, we can…
◦print a citation
◦ find an author in a list of authors
◦ compare with online prices
◦ check whether we have the latest edition
◦ find other books by the same author
◦…

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Abstract Definition of a Data Structure

In the abstract, a data structure is

1. A logical grouping of
several pieces of data, and

2. Some operations that manipulate
those data.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

One Can Build Data Structures with Arrays

Technically,
◦you know enough
◦ to use data structures in C.

How?

author[42] corresponds to title[42],
price[42], and so forth.

As any good Fortran programmer will tell
you, that’s all you need, so get to work!

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

Use an array for each field.

3/7/2018

3

C Allows Programmers to Define Structures

Letting the compiler
◦know about the grouping
◦ is far more convenient
◦and less error-prone.

For that purpose, C allows
programmers to define structures.

Let’s see how a book might look
as a C structure.

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Definition of a C Structure Representing a Book

struct book_t {
char author[50];
char title[100];
uint64_t isbn;
int32_t pages;
double price;
int32_t edition;
// and any other fields we want

};

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

A Structure Definition Defines a Structure Type

A struct definition
◦does not create instances of the struct.
◦ Instead, it defines a type.
◦ In our example, the new type
is struct book_t.

Then we can declare variables…

struct book_t book;

…in the same way as with other types.

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

Fields in Memory Ordered as in Struct Definition

struct book_t book;

How is book laid out in memory?
◦ In the order in which the fields
◦are listed in the definition.

(Fields are not shown
to scale here. Each
takes an appropriate
number of memory
locations.)

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

pages
price

edition

author
title
isbn

variable
book

3/7/2018

4

sizeof (expr) Evaluates to Number of Bytes Needed

struct book_t book;

When you need
◦ the size of a structure,
◦ use the sizeof () operator
◦ with a variable or an expression.

For example,
sizeof (book)

evaluates to the number of bytes occupied
by the variable book (a struct book_t).

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

Pitfall: Using sizeof with a Type

You will see code using a type with sizeof.

For example,
◦sizeof (struct book_t) in place of
◦sizeof (book).

This code will work correctly…

…until someone changes the type of book.

Just hope that they remember to change
the type used with sizeof, too.

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

Pitfall: “Calculating” Sizes

You may want to calculate a size yourself.

Avoid doing so if possible:
◦ sizes change from ISA to ISA,
◦and sometimes from OS to OS,
◦ or even from compiler to compiler.

Compilers must guarantee aligned accesses
◦and thus sometimes insert padding
◦between fields or at the end of a struct.

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

Most ISAs Impose Alignment Requirements

What is an alignment requirement?
Most ISAs (with byte-addressable memory)
require that
◦ loads and stores of N bytes
◦use addresses that are multiples of N.

For example,
◦ trying to load a 32-bit value (4B)
◦ from address 0x20000001 (= 1 mod 4)
◦ causes a program to crash.

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

3/7/2018

5

Compilers Must Produce Working Assembly Code

Even ISAs that
◦do not require aligned accesses
◦execute unaligned accesses slowly
(sometimes as much as ~100× slower).

Compilers must produce working code.

Thus compilers align
◦ fields to their size (for primitive types),
◦and structures to the maximum
alignment needed by any field.

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

A Padding Example

Consider: struct one_t {
int8_t a;
int32_t b;

};

A one_t must be 4-byte aligned
because of b.
After a, a compiler
◦ inserts 3 bytes of padding
◦ so that b is aligned properly.

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

a

b

Changing Order May or May Not Affect Size

Consider: struct one_t {
int32_t b;
int8_t a;

};

What if we change the order?

Same result: 8 bytes.

(Arrays of one_ts must have
proper alignment, too.)

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

a

b

Field Access Operator . Accesses a Structure’s Fields

The C operator for field access is

. (a period).

For example, given

struct book_t book;

we can write

book.author // the author field

book.title // the title field

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

3/7/2018

6

Fields of a Structure are Just Like Other Variables

Fields act
◦ like any other variable
◦of the field’s type.

With our book example,
book.pages has type int32_t,
book.price has type double, and
book.author has type char* (the
author field is an array of characters,
so the field name has type char*).

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

Structure Types Must By Default Include “struct”

By default,
◦ the name of a structure type in C
◦must include the keyword struct.

For example:

struct book_t a_book, another_book;

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

Structure Assignment Copies All Bits

struct book_t a_book, another_book;

// … some code to fill in a_book

// What does this assignment do?

another_book = a_book;

Copies all bits from a_book
into another_book.

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

Pass Pointers to Structures, not Structures, as Arguments

struct book_t a_book, another_book;

// … some code to fill in a_book

another_book = a_book;

// Why pass a structure’s address?

my_book_printer (&another_book);

To avoid copying the
entire structure onto the stack.

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

3/7/2018

7

Call-by-Value Demands Copies of Structure Arguments

If you pass a structure to a C function,
◦call-by-value semantics demand
◦ that the compiler make a copy
of the structure.

Every function call must make a new copy.

Structures can be large.

Doing so is rarely acceptable.*
*A complex number composed of two floating-point

numbers is an example of a possible exception.

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

Let’s Define a Stack Structure to Solve a Problem

Let’s do an example. Let’s develop
◦a stack structure and
◦ some operations on a stack,
◦ then use the stack to solve a problem.

Our stack structure?
struct stack_t

The task:
◦read input line by line,
◦ then print it out in reverse.

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

Compiler Must Be Able to Know a struct’s Size

struct stack_t {
// 500 lines of up to 200 chars
char data[500][200];
int32_t top;

};

Why only 200 characters per line?

And why only 500 lines?

Fields must have known size.

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

Fields Can Have Pointer Types

But …

wait a minute …

a pointer has known size, too!

Later, we will learn how to
allocate memory dynamically.

For now, we have to pick values, so
◦at most 500 lines, and
◦at most 200 characters per line.

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

3/7/2018

8

top Field Indicates Which Elements Are Meaningful

struct stack_t {
// 500 lines of up to 200 chars
char data[500][200];
int32_t top;

};

top holds index of data element
on top of the stack, so
◦when stack is empty, top is 500, and
◦when stack is full, top is 0.

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

The fgets Function Reads a Line from a Stream

To read lines from the keyboard,
◦we will use an input routine
◦ from C’s standard library:
char* fgets (char* s, int size,

FILE* stream);

The fgets function
◦reads up to (size – 1) characters or until
the end of a line (whichever comes first)

◦ into array s and
◦returns s on success, or NULL on failure.

© 2018 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

Use fgets to Read from the Keyboard

char* fgets (char* s, int size,
FILE* stream);

For now,*
◦ ignore the stream argument, for which
◦we use stdin to read from the keyboard.

*We will study I/O in a few weeks.

© 2018 Steven S. Lumetta. All rights reserved. slide 31ECE 220: Computer Systems & Programming

The strcpy Function Copies a String

We will also use a standard C library
function that copies strings:

char* strcpy (char* dest,
const char* src);

strcpy
◦copies the string from src
◦ into the array at dest.
◦The destination must have enough space!
(No checking can be done by the function.)

© 2018 Steven S. Lumetta. All rights reserved. slide 32ECE 220: Computer Systems & Programming

3/7/2018

9

Initialize stack
to empty.

a buffer to store
one line

a stack

Begin by Initializing the Stack

Let’s write the code.

int main ()

{

char buf[200];

struct stack_t stack;

stack.top = 500;

© 2018 Steven S. Lumetta. All rights reserved. slide 33ECE 220: Computer Systems & Programming

Got line from
keyboard?

Stack not full?

Decrement, then
use index.

Copy from buf
into stack.

Read from Keyboard Until Stack Full or Input Ends

while (0 < stack.top &&

NULL != fgets

(buf, 200, stdin)) {

strcpy (stack.data[--stack.top],

buf);

}

© 2018 Steven S. Lumetta. All rights reserved. slide 34ECE 220: Computer Systems & Programming

Important: If the stack is full, no line
is requested (fgets is not called).

Logical AND Shortcutting Prevents Read with Full Stack

while (0 < stack.top &&

NULL != fgets

(buf, 200, stdin)) {

strcpy (stack.data[--stack.top],

buf);

}

© 2018 Steven S. Lumetta. All rights reserved. slide 35ECE 220: Computer Systems & Programming

Stack not empty?

Use index,
then increment.

Print one line
(includes LF).

Print a Line, Pop, and Repeat Until Stack is Empty

while (500 > stack.top) {

printf ("%s",

stack.data[stack.top++]);

}

return 0;

} // end of main

© 2018 Steven S. Lumetta. All rights reserved. slide 36ECE 220: Computer Systems & Programming

3/7/2018

10

Data Structures Should Hide Their Implementations

The code works, but doesn’t exhibit good style.

A good data structure
◦allows other code to use the structure
◦and operations defined on the structure
◦without knowing details of the
structures’s implementation.

Such a structure illustrates
“information hiding” (Parnas, 1972).

© 2018 Steven S. Lumetta. All rights reserved. slide 37ECE 220: Computer Systems & Programming

Why is Information Hiding Useful?

Example: choice of 500-line limit

Why shouldn’t users know?

Imagine that 100 programs use our stack.

Then we change from 500 to 1,000 lines.

Now we need to find and update
◦ stack initialization, and
◦any checks for stack empty
◦ in 100 programs!

© 2018 Steven S. Lumetta. All rights reserved. slide 38ECE 220: Computer Systems & Programming

Remember: Pass Pointers, Not Structures

Instead, we can write functions
◦ to initialize a stack_t and
◦ to check whether a stack_t is empty.

Let’s start with the second.
How about…

int32_t stack_empty
(struct stack_t s); ?

Our struct is ~100kB! Don’t force
compiler to make a copy!

© 2018 Steven S. Lumetta. All rights reserved. slide 39ECE 220: Computer Systems & Programming

pointer to a
struct stack_t

Parentheses required;
. has precedence over *

A Function to Check Whether a stack_t is Empty

// Returns 1 if stack is empty, or
// 0 if stack is not empty.

int32_t stack_empty
(const struct stack_t* s)

{
return (500 == (*s).top);

}

© 2018 Steven S. Lumetta. All rights reserved. slide 40ECE 220: Computer Systems & Programming

3/7/2018

11

Use the -> Operator to Access Fields after Dereferencing

One more operator:
◦->
◦dereference and access a field

Rather than writing

(*s).top ,

we can write

s->top .

The two expressions are equivalent.

© 2018 Steven S. Lumetta. All rights reserved. slide 41

Use the -> operator.

Revised Function to Check Whether a stack_t is Empty

// Returns 1 if stack is empty, or
// 0 if stack is not empty.

int32_t stack_empty
(const struct stack_t* s)

{
return (500 == s->top);

}

© 2018 Steven S. Lumetta. All rights reserved. slide 42ECE 220: Computer Systems & Programming

Notice the human naming convention:
the stack_ prefix tells programmers

that the function deals with a stack_t.

A Function to Initialize a stack_t

void stack_init (struct stack_t* s)
{

s->top = 500;
}

© 2018 Steven S. Lumetta. All rights reserved. slide 43ECE 220: Computer Systems & Programming

What Other Operations Do We Want for stack_t?

What other operations might we
write for our stack?
◦Check whether a stack_t is full,
◦push a string onto a stack_t, and
◦pop a string from a stack_t.

The first is easy.

For push/pop, we need to make choices.

© 2018 Steven S. Lumetta. All rights reserved. slide 44ECE 220: Computer Systems & Programming

3/7/2018

12

A Function to Check Whether a stack_t is Full

// Returns 1 if stack is full, or
// 0 if stack is not full.

int32_t stack_full
(const struct stack_t* s)

{
return (0 == s->top);

}

© 2018 Steven S. Lumetta. All rights reserved. slide 45ECE 220: Computer Systems & Programming

Information Hiding and Performance Sometimes at Odds

How do we push a string without
exposing details of the implementation?

For example,
◦ should we make a copy of the string, or
◦ just copy the pointer passed in?

Caller or callee
◦ must ensure that string does
not disappear after it is pushed,

◦ but which one? Copying twice is wasteful.
Let’s retain our current design, so
stack_push must make a copy.

© 2018 Steven S. Lumetta. All rights reserved. slide 46ECE 220: Computer Systems & Programming

How Can We Handle Long Strings? Fail…

What should happen if caller passes
a string longer than 199 characters?
◦Fail? A valid choice, but not so useful.
◦Copy the first 199? Also valid, but
may not be what the user wants.

◦We have no other choice with the
current implementation!

We will go with failure for simplicity.

© 2018 Steven S. Lumetta. All rights reserved. slide 47ECE 220: Computer Systems & Programming

for copying
string

No space on
stack? Fail.

the stack

the string

A Function to Push a String Onto a stack_t

// Returns 1 on success,
// or 0 on failure.
int32_t stack_push (struct stack_t* s,

const char* str)
{

int32_t i;
char* write;
if (stack_full (s)) {

return 0;
}

© 2018 Steven S. Lumetta. All rights reserved. slide 48ECE 220: Computer Systems & Programming

3/7/2018

13

Decrement, then use index.

Copy to this element
on stack.

Use a char* to Point to Stack Element to be Written

write = s->data[--s->top];

© 2018 Steven S. Lumetta. All rights reserved. slide 49ECE 220: Computer Systems & Programming

Loop until end of str.

If str is too long,
restore stack top

and fail.

Copy a character and advance pointers.

Loop Until End of String or Out of Space

for (i = 0; '\0' != *str; i++) {
if (199 == i) {

s->top++;
return 0;

}

*write++ = *str++;
}

© 2018 Steven S. Lumetta. All rights reserved. slide 50ECE 220: Computer Systems & Programming

Write NUL to end of string.

Push has succeeded.

End the String and Return Success

*write = '\0';
return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 51ECE 220: Computer Systems & Programming

Must Also Copy in stack_pop

What about popping a string?
We make a copy in stack_push.
After stack_pop returns,
◦ the copy is no longer on the stack,
◦ thus a call to stack_push will overwrite it
◦ so we should not return a pointer
to the copy.

The implication?
stack_pop must also make a copy.

© 2018 Steven S. Lumetta. All rights reserved. slide 52ECE 220: Computer Systems & Programming

3/7/2018

14

How Can We Handle Long Strings? Fill Array…

Caller to stack_pop
◦must provide a space (an array) for copy.
◦For safety, must also pass length of array.

What should happen if caller passes
an array shorter than the stored string?
◦Fail? But their code pushed the string!
◦Fill the array and add a NUL?
Maybe the best choice in this case.

We will go with filling the array.

© 2018 Steven S. Lumetta. All rights reserved. slide 53ECE 220: Computer Systems & Programming

the array

the length

the stack

for copying

Stack is
empty? Fail.

A Function to Pop a String from a stack_t

// Returns 1 on success,
// or 0 on failure.
int32_t stack_pop (struct stack_t* s,

char* buf, int32_t len)
{

int32_t i;
char* read;
if (stack_empty (s)) {

return 0;
}

© 2018 Steven S. Lumetta. All rights reserved. slide 54ECE 220: Computer Systems & Programming

Loop (len – 1)
times or until
end of string.

Copy a character and
advance pointers.

Copy from element
on top of stack.

Copy String into Buffer Provided by Caller

read = s->data[s->top];
for (i = 1;

len > i && '\0' != *read;
i++) {
*buf++ = *read++;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 55ECE 220: Computer Systems & Programming

Pop has succeeded.

Write NUL to end of string.

Pop copied element
from stack.

Finish the String, Pop the Element, and Return Success

*buf = '\0';
s->top++;
return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 56ECE 220: Computer Systems & Programming

3/7/2018

15

Begin by Initializing the Stack

Now we can rewrite our code
(new parts in blue).

int main ()

{

char buf[200];

struct stack_t stack;

init_stack (&stack);

© 2018 Steven S. Lumetta. All rights reserved. slide 57ECE 220: Computer Systems & Programming

If push fails, stop reading input.

Check to avoid fgets with a full stack.

Read from Keyboard Until Stack Full or Input Ends

while (!stack_full (&stack) &&

NULL != fgets

(buf, 200, stdin)) {

if (!stack_push (&stack, buf)) {

break;

}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 58ECE 220: Computer Systems & Programming

Print one line
(includes LF).

If stack pop
fails, give up.

Stack not empty?

Print a Line, Pop, and Repeat Until Stack is Empty

while (!stack_empty (&stack)) {
if (!stack_pop (&stack, buf,

200)) {
break;

}
printf ("%s", buf);

}
return 0;
} // end of main

© 2018 Steven S. Lumetta. All rights reserved. slide 59ECE 220: Computer Systems & Programming

