University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Structured Data in C

Sometimes, Knowing Which Thing is Enough

In MP6,

owe represented the current piece type
owith a small integer

o (a bit pattern).

Sometimes,

°such a representation suffices:

oin MP6, we just needed to know which piece.

ECE120 treated all representations that way.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 1

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 2

3/7/2018

Often Want to Group Data Together Conceptually

How Does One Describe a Book?

More frequently, we want
>to record several pieces of information
about a given thing,

cand to group these data together
conceptually.

Examples:
o LC-3 instructions encode several fields.

o MP2 and MP3 used “events” (a name, a set
of days, and a time or set of times).

Imagine that you want to
otrack your personal library
°as an app on your phone.

What do you want to know about a book?

author length (in pages)
title price
ISBN edition

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 3

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 4




Can Also Define Operations on a Group of Data

What Can One Do with a Book?

In addition to grouping information,

owe associate operations (functions)
owith such a grouping.

For example, in MP2 and MP3, you wrote

o event insertion into a schedule,

e selecting a possible hour for an event, and

o event deletion from a schedule
(for popping the stack in MP3).

Given information about a book, we can...
°oprint a citation

°find an author in a list of authors
ocompare with online prices

ocheck whether we have the latest edition
o find other books by the same author

o

3/7/2018

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 5

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 6

Abstract Definition of a Data Structure

One Can Build Data Structures with Arrays

In the abstract, a data structure is

1. Alogical grouping of
several pieces of data, and

2. Some operations that manipulate
those data.

Technically,
oyou know enough
°to use data structures in C.

How? Use an array for each field.

author[42] corresponds to title[42],
price[42], and so forth.

As any good Fortran programmer will tell
you, that’s all you need, so get to work!

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 7

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 8




3/7/2018

C Allows Programmers to Define Structures

Definition of a C Structure Representing a Book

Letting the compiler
cknow about the grouping
°is far more convenient
cand less error-prone.

For that purpose, C allows
programmers to define structures.

Let’s see how a book might look
as a C structure.

struct book t {
char author[50] ;
char title[100];
uint64_t isbn;
int32 t pages;
double price;
int32 t edition;
// and any other fields we want

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 9

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 10

A Structure Definition Defines a Structure Type

Fields in Memory Ordered as in Struct Definition

A struct definition
-does not create instances of the struct.

oInstead, it defines a type.

oIn our example, the new type
is struct book_t.

Then we can declare variables...
struct book t book;

...in the same way as with other types.

struct book t book;

How is book laid out in memory? [Jariapje
°In the order in which the fields book
care listed in the definition.

(Fields are not shown author
to scale here. Each EREES
takes an appropriate isbn
number of memory pages
locations.) price
edition

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 11

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 12




3/7/2018

sizeof (expr) Evaluates to Number of Bytes Needed

Pitfall: Using sizeof with a Type

struct book_t book;

When you need
o the size of a structure,
ouse the sizeof () operator
o with a variable or an expression.
For example,
sizeof (book)

evaluates to the number of bytes occupied
by the variable book (a struct book_t).

You will see code using a type with sizeof.

For example,

°sizeof (struct book_t) in place of
osizeof (book).

This code will work correctly...

...until someone changes the type of book.

Just hope that they remember to change
the type used with sizeof, too.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 13

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 14

Pitfall: “Calculating” Sizes

Most ISAs Impose Alignment Requirements

You may want to calculate a size yourself.
Avoid doing so if possible:

osizes change from ISA to ISA,

o and sometimes from OS to OS,

°or even from compiler to compiler.

Compilers must guarantee aligned accesses
cand thus sometimes insert padding
obetween fields or at the end of a struct.

What is an alignment requirement?
Most ISAs (with byte-addressable memory)
require that

cloads and stores of N bytes

cuse addresses that are multiples of N.
For example,

otrying to load a 32-bit value (4B)

o from address 0x20000001 (= 1 mod 4)
ocauses a program to crash.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 15

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 16




Compilers Must Produce Working Assembly Code

Even ISAs that
°do not require aligned accesses

cexecute unaligned accesses slowly
(sometimes as much as ~100x slower).

Compilers must produce working code.

Thus compilers align
o fields to their size (for primitive types),

°and structures to the maximum
alignment needed by any field.

A Padding Example
Consider: struct one_t {
int8 t a; .
int32_t b; |
i -

A one_t must be 4-byte aligned —
because of b.
After a, a compiler b
cinserts 3 bytes of padding
oso that b is aligned properly.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 17

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 18

Changing Order May or May Not Affect Size

3/7/2018

Consider: struct one_t { —
int32 t b;

int8 t a; b

};

What if we change the order? .
Same result: 8 bytes.

(Arrays of one_ts must have
proper alignment, too.)

Field Access Operator . Accesses a Structure’s Fields

The C operator for field access is
(a period).
For example, given
struct book t book;
we can write
book.author // the author field
book.title // the title field

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 19

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 20




3/7/2018

Fields of a Structure are Just Like Other Variables

Structure Types Must By Default Include “struct”

Fields act
clike any other variable
- of the field’s type.

With our book example,
book .pages has type int32_t,
book.price has type double, and

book . author has type char* (the
author field is an array of characters,
so the field name has type char¥).

By default,
othe name of a structure type in C
omust include the keyword struct.

For example:
struct book_t a book, another book;

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 21

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 22

Structure Assignment Copies All Bits

Pass Pointers to Structures, not Structures, as Arguments

struct book_t a book, another book;

// .. some code to fill in a book

// What does this assignment do?

another book = a_book;

Copies all bits from a_book
into another_book.

struct book_t a book, another book;
// .. some code to fill in a book
another book = a book;

// Why pass a structure’s address?
my book printer (&another book) ;

To avoid copying the
entire structure onto the stack.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 23

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 24




3/7/2018

Call-by-Value Demands Copies of Structure Arguments

Let’s Define a Stack Structure to Solve a Problem

If you pass a structure to a C function,
o call-by-value semantics demand
cthat the compiler make a copy

of the structure.
Every function call must make a new copy.
Structures can be large.

Doing so is rarely acceptable.*®

*A complex number composed of two floating-point
numbers is an example of a possible exception.

Let’s do an example. Let’s develop

ca stack structure and

°some operations on a stack,

othen use the stack to solve a problem.

Our stack structure?
struct stack t

The task:
oread input line by line,
othen print it out in reverse.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 25

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 26

Compiler Must Be Able to Know a struct’s Size

Fields Can Have Pointer Types

struct stack_t {
// 500 lines of up to 200 chars
char data[500] [200] ;
int32_t top;
}:
Why only 200 characters per line?
And why only 500 lines?

Fields must have known size.

But ...
wait a minute ...
a pointer has known size, too!

Later, we will learn how to
allocate memory dynamically.

For now, we have to pick values, so
°at most 500 lines, and

cat most 200 characters per line.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 27

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 28




3/7/2018

top Field Indicates Which Elements Are Meaningful

The £gets Function Reads a Line from a Stream

struct stack_t {
// 500 lines of up to 200 chars
char data[500][200] ;
int32_t top;
}i
top holds index of data element
on top of the stack, so
owhen stack is empty, top is 500, and
owhen stack is full, top is 0.

To read lines from the keyboard,
owe will use an input routine
ofrom C’s standard library:
char* fgets (char* s, int size,
FILE* stream) ;
The f£gets function

oreads up to (size - 1) characters or until
the end of a line (whichever comes first)

cinto array s and
oreturns s on success, or NULL on failure.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 29

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 30

Use fgets to Read from the Keyboard

char* fgets (char* s, int size,
FILE* stream) ;

For now,*
cignore the stream argument, for which
owe use stdin to read from the keyboard.

*We will study I/O in a few weeks.

The strepy Function Copies a String

We will also use a standard C library
function that copies strings:

char* strcpy (char* dest,
const char* src);
strcpy
> copies the string from src
cinto the array at dest.

°The destination must have enough space!
(No checking can be done by the function.)

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 31

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 32




Let’s write the code.

int main ()

{

e —— e
_—-

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 33

&&
IIIIIIIIIIIIIIIIIIIII!II!IIIIIIII
(stack.datal 1,
buf) ;

3/7/2018

while (0 < stack.top
NULL != fgets
(buf, 200, stdin)) {
strcpy (stack.data[-:stack.top],
buf) ;

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 34

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 35

return O;

} // end of main

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 36




Data Structures Should Hide Their Implementations

The code works, but doesn’t exhibit good style.

A good data structure

callows other code to use the structure

cand operations defined on the structure

owithout knowing details of the
structures’s implementation.

Such a structure illustrates
“information hiding” (Parnas, 1972).

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 37

Why is Information Hiding Useful?

Example: choice of 500-line limit

Why shouldn’t users know?
Imagine that 100 programs use our stack.
Then we change from 500 to 1,000 lines.

Now we need to find and update
o stack initialization, and

> any checks for stack empty

°in 100 programs!

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 38

Remember: Pass Pointers, Not Structures

Instead, we can write functions

oto initialize a stack_t and

°to check whether a stack_t is empty.
Let’s start with the second.

How about...

int32_t stack_empty
(struct stack t s); ?

Our struct is ~100kB! Don’t force
compiler to make a copy!

A Function to Check Whether a stack_t is Empty

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 39

// Returns 1 if stack is empty, or
// 0 if stack is not empty.

pointer to a
struct stack_t
int32 t stack empty
(const struct stack t* s)
{
return (500 == (*s).top)

} Parentheses required;

. has precedence over *

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 40

3/7/2018

1N



Use the -> Operator to Access Fields after Dereferencing

One more operator:
°o—>

cdereference and access a field
Rather than writing
(*s) .top
we can write
s->top

The two expressions are equivalent.

©2018 Steven S. Lumetta. All rights reserved.

slide 41

Revised Function to Check Whether a stack_t is Empty

// Returns 1 if stack is empty, or
// 0 if stack is not empty.

int32 t stack empty

(const struct stack t* s)
{

return (500 == s->top) ;

Use the -> operator.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 42

A Function to Initialize a stack_t

Notice the human naming convention:
the stack__ prefix tells programmers
that the function deals with a stack_t.

void stack init (struct stack t* s)
{
s->top = 500;

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 43

What Other Operations Do We Want for stack t?

What other operations might we
write for our stack?

°Check whether a stack_t is full,
°push a string onto a stack_t, and
°pop a string from a stack_t.

The first is easy.

For push/pop, we need to make choices.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 44

3/7/2018

11



3/7/2018

// Returns 1 if stack is full, or
// 0 if stack is not full.

int32 t stack_full
(const struct stack_ t* s)

return (0 == s->top)
ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 45

How do we ]push a spring without
exposing details of the implementation?

For example,

> should we make a copy of the string, or

°just copy the pointer passed in?

Caller or callee

°must ensure that string does
not disappear after it is pushed,

°but which one? Copying twice is wasteful.

Let’s retain our current design, so
stack_push must make a copy.

What should happen if caller passes
a string longer than 199 characters?
o Fail? A valid choice, but not so useful.

° Copy the first 199? Also valid, but
may not be what the user wants.

> We have no other choice with the
current implementation!

We will go with failure for simplicity.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 46

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 47

// Returns 1 on success,
// or 0 on failure.
int32_t stack push (

r

g
ST g

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 48

19



3/7/2018

s->top++;
return 0;

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 49 ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 50

We make a copy in stack_push.

After stack_pop returns,
> the copy is no longer on the stack,
othus a call to stack_push will overwrite it
°s0 we should not return a pointer
to the copy.
The implication?
stack_pop must also make a copy.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 51 ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 52

12



3/7/2018

Caller to stack_pop // Returns 1 on success,
°must provide a space (an array) for copy. // or 0 on failure.
o For safety, must also pass length of array. int32_t stack_pop (

’

What should happen if caller passes
an array shorter than the stored string?
o Fail? But their code pushed the string!
o Fill the array and add a NUL?
Maybe the best choice in this case.

{

We will go with filling the array.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 53 ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 54

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 55 ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 56

11



Now we can rewrite our code
(new parts in blue).

int main ()

{

char buf[200];

struct stack_t stack;

init stack (&stack);

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 57

NULL != fgets
(buf, 200, stdin)) {
if (!stack push (&stack, buf)) {

if ('stack pop (&stack, buf,

200)) {

}

return 0;
} // end of main

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 58

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 59

3/7/2018

1



