University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

More Recursion Examples

Ready to Play a Game?

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 1

Let’s play Nim!
In Nim, there are three piles of sticks...

M

On their turn, each player
otakes as many sticks as they want
e from one of the piles.

The last player to take sticks wins.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 2

Is Nim a Forced Win or a Forced Loss

Nim starts with 3, 5, and 7 sticks in the piles.
There is no way to tie.

A forced win means that,

-if a player plays correctly,

othey are guaranteed to win.

Is Nim

ca forced win (for the first player),

cor a forced loss?

Let’s Use Recursion to Evaluate Nim

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 3

There’s a fairly easy and intuitive
mathematical solution to Nim.

But ... maybe you don’t know it?
Fortunately, now you know recursion.

So let’s
o write a recursive function
°to answer the question!

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 4

3/6/2018

3/6/2018

Here’s how our function works:
cgiven the number of sticks
oin each of the three piles,
othe function nim returns
othe value of the game.

Since Nim is a zero-sum game,

°1 can represent the first player winning,
cand -1 can represent the second player.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 5

int32 t nim (int32_t p[3])
return -1;
ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 7

In nim,
cthe current player makes one move
> then calls nim to evaluate the new piles.

Since Nim is a zero-sum game,

> the value returned by the recursive call
°is simply negated:

o the value to one player

°1is negative the value to the other player.

The value of the game is the maximum value
over all possible moves (the best move).

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 6

{

// Try one move
// and update max.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 8

L R
B I, e
T e

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 9

The code is on the web page.

3/6/2018

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 10

Other applications of recursion include...
o puzzles, such as Sudoku,

o code generation, and

o code optimization.

Generally, recursion is useful for wide
searches (many children).

Deep searches (many levels) tend to break the
stack.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 11

As before, let’s do a group exercise in lecture.

The process:

1.

I give you a problem.

2. You form groups of 3-4 people.
3.
4

Talk about ways to solve the problem.

Once enough of the groups have finished,
one group volunteers to share their
answer.

We go over the group’s answer together.

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved.

slide 12

The task: check for cycles in a maze
o using our earlier maze representation:

static uint8_t maze[10][10]; // maze
// L=1, R=2, U=4,D-=28
o Is a cycle reachable from starting point?

> You define the function signature.
> You probably should use (initialized to 0):

static uint8_t found[10][10];

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 13

static uint8 t maze[10][10];

Each space in the array is a bit vector
composed of the following bits:

o/ 1 —the space has a left wall

/[2 — the space has a right wall

o/l 4 — the space has an upper wall

/| 8 — the space has a lower wall

°// 16 — the space is the exit

We can represent the maze with an array:

More things to try on your own:

1. Remove all cycles (by adding walls as
necessary).

2. Make all parts of the maze connected (by
removing walls as necessary).

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 14

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 15

3/6/2018

