
3/6/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

More Recursion Examples

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Ready to Play a Game?

Let’s play Nim!

In Nim, there are three piles of sticks…

On their turn, each player
◦ takes as many sticks as they want
◦ from one of the piles.

The last player to take sticks wins.

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Is Nim a Forced Win or a Forced Loss

Nim starts with 3, 5, and 7 sticks in the piles.

There is no way to tie.

A forced win means that,
◦ if a player plays correctly,
◦ they are guaranteed to win.

Is Nim
◦a forced win (for the first player),
◦or a forced loss?

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

Let’s Use Recursion to Evaluate Nim

There’s a fairly easy and intuitive
mathematical solution to Nim.

But … maybe you don’t know it?

Fortunately, now you know recursion.

So let’s
◦write a recursive function
◦ to answer the question!

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

3/6/2018

2

Let’s Use Recursion to Evaluate Nim

Here’s how our function works:
◦given the number of sticks
◦ in each of the three piles,
◦ the function nim returns
◦ the value of the game.

Since Nim is a zero-sum game,
◦1 can represent the first player winning,
◦and -1 can represent the second player.

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Value is the Maximum of Negated Recursive Evaluations

In nim,
◦ the current player makes one move
◦ then calls nim to evaluate the new piles.

Since Nim is a zero-sum game,
◦ the value returned by the recursive call
◦ is simply negated:
◦ the value to one player
◦ is negative the value to the other player.

The value of the game is the maximum value
over all possible moves (the best move).

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

max move
value seen

pile for a move

sticks for a move

value for a move

stopping condition:
piles are empty

Piles are Empty? Current Player Has Lost

int32_t nim (int32_t p[3])
{

int32_t max = -2;
int32_t pnum;
int32_t count;
int32_t value;
if (0 == p[0] && 0 == p[1] &&

0 == p[2]) {
return -1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Try moves for
each pile.

Try each
valid

number
of sticks.

Return best move.

Try Every Possible Move and Choose the Best

for (pnum = 0; 3 > pnum; pnum++) {
for (count = 1;

p[pnum] >= count;
count++) {

// Try one move
// and update max.

}
}
return max;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

3/6/2018

3

Modify the array in place
(rather than creating a

copy in our stack frame).
Recurse.

Restore the original
array value.

If this move’s value is
better than any previous

move, record it.

Make One Move, Evaluate, and Update

p[pnum] -= count;

value = -nim (p);
p[pnum] += count;
if (max < value) {

max = value;
}

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

nim is On the Web Page

The code is on the web page.

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

A Few Other Applications of Recursion

Other applications of recursion include…
◦puzzles, such as Sudoku,
◦ code generation, and
◦ code optimization.

Generally, recursion is useful for wide
searches (many children).

Deep searches (many levels) tend to break the
stack.

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

Time for Another Think-Pair-Share

As before, let’s do a group exercise in lecture.

The process:
1. I give you a problem.
2. You form groups of 3-4 people.
3. Talk about ways to solve the problem.
4. Once enough of the groups have finished,

one group volunteers to share their
answer.

5. We go over the group’s answer together.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

3/6/2018

4

The Task: Check a Maze for Cycles

The task: check for cycles in a maze
◦using our earlier maze representation:

static uint8_t maze[10][10]; // maze

// L = 1, R = 2, U = 4, D = 8
◦ Is a cycle reachable from starting point?
◦You define the function signature.
◦You probably should use (initialized to 0):

static uint8_t found[10][10];

slide 13ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved.

Review: How the Bit Vector Representation Works

We can represent the maze with an array:
static uint8_t maze[10][10];

Each space in the array is a bit vector
composed of the following bits:
◦ // 1 – the space has a left wall
◦ // 2 – the space has a right wall
◦ // 4 – the space has an upper wall
◦ // 8 – the space has a lower wall
◦ // 16 – the space is the exit

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

Tasks on Your Own

More things to try on your own:

1. Remove all cycles (by adding walls as
necessary).

2. Make all parts of the maze connected (by
removing walls as necessary).

slide 15ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved.

