
3/6/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Recursion

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Writing the Fibonacci Sequence

Anyone remember the Fibonacci sequence?

1, 1, 2, 3, 5, 8, 13, …

Can anyone write the whole sequence?

(The rest of us can be done for today!)

How about this way: F(0) = 1
F(1) = 1
F(N) = F(N – 2) + F(N – 1)

This answer is a recursive definition, a
function defined in terms of itself.

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Fibonacci Sequence is Well-Defined

Fibonacci: F(0) = 1
F(1) = 1
F(N) = F(N – 2) + F(N – 1)

Given this definition, we say that F(N)
◦ is well-defined because
◦ it eventually stops recursing
for all N ≥ 0,

◦ or, equivalently, F(N) satisfying the
equations is unique for all N ≥ 0.

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

Some Sequences are Not Well-Defined

This sequence is not well-defined:

G(0) = 1
G(N) = [G(N – 1) + G(N + 1)] / 2

What can G(N) be?

1, 1, 1, 1, 1, 1, 1, …

1, 2, 3, 4, 5, 6, 7, …

The possibilities are infinite.

G(N) is not well-defined.

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

3/6/2018

2

Recursive Functions Must Be Well-Defined for Computers

If you
◦write a recursive function
◦ that is not well-defined,
◦don’t expect a computer to choose.

As you know, computers are dumb.

Some well-defined recursive functions
◦may still be difficult or impossible to express
◦ in a computer language.

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Time for the Today’s “Help Prof. Lumetta” Problem!

I need your help again.

If I build a new house
◦as a maze ...
◦… like that …
◦can I go from (0,0)
◦ to the exit at E?

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

0 421 3
0
1
2
3

x coordinate

y
co

o
rd

in
a

te

E

How Did you Solve the Maze?

How did you know?

And, more importantly…

…can you teach my computer?

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

We Can Use a Tree to Solve the Problem

Maybe you used a tree?

(When we run out of ways to go,
we won’t have found the exit.)

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

0 421 3
0
1
2
3

x coordinate

y
co

o
rd

in
a

te

E

(0,0)

(0,1)

(1,1)

(2,1) (1,2)

(2,0) (1,3)

3/6/2018

3

Represent the Maze with an Array of Bit Vectors

We can represent the maze with an array:
static uint8_t maze[10][10];

Each space in the array is a bit vector
composed of the following bits:
◦ // 1 – the space has a left wall
◦ // 2 – the space has a right wall
◦ // 4 – the space has an upper wall
◦ // 8 – the space has a lower wall
◦ // 16 – the space is the exit

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Do You Understand the Representation?

(Reminder: L=1, R=2, U=4, D=8, E=16)

For example,
◦maze[0][0] is
◦maze[0][1] is
◦maze[3][1] is
◦maze[4][2] is
◦maze[2][2] is

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

0 421 3
0
1
2
3

x coordinate

y
co

o
rd

in
a

te

E

7 (1 | 2 | 4)
9
3
7
29

Outline for a Recursive Solution

Let’s solve the problem recursively.
Here’s the approach:
◦Keep track of reachable locations.
◦Write a function to mark
one location as reachable.

◦Within the function, call
the same function to
mark all “children”
(adjacent reachable
neighbors) as reachable.

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

0 421 3
0
1
2
3

x coordinate

y
co

o
rd

in
a

te

E

Represent Reachable Locations with a Second Array

Track reachable locations with a second array:

static uint8_t found[10][10];

Each element is either:
◦0 – the space has not been found/reached
◦1 – the space has been found/reached

And we use one variable for the exit:

static int32_t saw_exit;

(Both of these should be initialized to all 0s.)

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

3/6/2018

4

Ready to Write the Recursive Function

Now we’re ready to write the function.
Here’s a signature:

void can_reach (int x, int y);

The function should
◦ set all locations reachable from (x,y)
to 1 in found, and

◦ set saw_exit to 1 iff the exit is
reachable from (x,y).

(To do so, the function will call itself.)

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

No left
wall?

Space to left is reachable.

(x,y) is
reachable.

Mark as Reachable, then Check Children

void can_reach (int x, int y)
{

found[x][y] = 1;
if (0 == (maze[x][y] & 1)) {

can_reach (x – 1, y);
}
if ((0 == maze[x][y] & 2)) {

can_reach (x + 1, y);
}

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

No right
wall?

Space to right is reachable.

Same Check and Marking for Right Child (Value 2)

void can_reach (int x, int y)
{

found[x][y] = 1;
if (0 == (maze[x][y] & 1)) {

can_reach (x – 1, y);
}
if (0 == (maze[x][y] & 2)) {

can_reach (x + 1, y);
}

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

No
upper
wall?

Space above is reachable.

Same Check and Marking for Upper Child (Value 4)

if (0 == (maze[x][y] & 4)) {
can_reach (x, y - 1);

}
if (0 == (maze[x][y] & 8)) {

can_reach (x, y + 1);
}
if (0 != (maze[x][y] & 16)) {

saw_exit = 1;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

3/6/2018

5

No
lower
wall?

Space below is reachable.

Same Check and Marking for Lower Child (Value 8)

if (0 == (maze[x][y] & 4)) {
can_reach (x, y - 1);

}
if (0 == (maze[x][y] & 8)) {

can_reach (x, y + 1);
}
if (0 != (maze[x][y] & 16)) {

saw_exit = 1;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

Record having seen exit.

Exit
here?

Finally, Check and Mark Exit (Value 16)

if (0 == (maze[x][y] & 4)) {
can_reach (x, y - 1);

}
if (0 == (maze[x][y] & 8)) {

can_reach (x, y + 1);
}
if (0 != (maze[x][y] & 16)) {

saw_exit = 1;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

Does Our can_reach Function Answer My Question?

How do we use can_reach to answer my
question about getting from (0,0) to the exit?

1. Fill found and saw_exit with 0s.

2. Call can_reach (0,0).

3. Check saw_exit.

Does it work?

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

0 421 3
0
1
2
3

x coordinate

y
co

o
rd

in
a

te

E

Maybe There’s a Bug?

Let’s try it!

(Are you still mad about my asking
you to write all of Fibonacci?)

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

0 421 3
0
1
2
3

x coordinate

y
co

o
rd

in
a

te

E

(0,0)

(0,1)

(1,1)

(0,1)

(1,1)

(0,1)

3/6/2018

6

When Should We Stop Recursing?

What’s the problem?

In math,
◦we used base cases
◦ to stop the recursion.

In a C function,
◦we need a stopping condition
◦ to stop the recursion.

So: when should we stop?

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

Stop if the Space Has Already Been Marked as Reachable

Stop if we already reached (x,y).

void can_reach (int x, int y)
{

if (found[x][y]) { return; }
found[x][y] = 1;
if (0 == (maze[x][y] & 1)) {

can_reach (x – 1, y);
}

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

Review: Induction, Bit-Slicing, Recursion

As mentioned in 120, the following are
closely related mathematically
◦proof by induction
◦bit-sliced hardware design
◦ recursion.

In all three, one
◦ solves a small piece of a problem, then
◦ combines it with the “rest” of the solution
◦ (which is also solved as small pieces).

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

A General Strategy for Recursion

Here’s a general strategy for recursion.

______ recursive (______)

{

// Check stopping conditions.

// Handle one node.

// Handle children.

}

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

These may
be swapped.

