Writing the Fibonacci Sequence

Anyone remember the Fibonacci sequence?

1, 1, 2, 3, 5, 8, 13, ...

Can anyone write the whole sequence?

(The rest of us can be done for today!)

How about this way:

\[
\begin{align*}
F(0) &= 1 \\
F(1) &= 1 \\
F(N) &= F(N - 2) + F(N - 1)
\end{align*}
\]

This answer is a recursive definition, a function defined in terms of itself.

Fibonacci Sequence is Well-Defined

Fibonacci: \(F(0) = 1 \)

\(F(1) = 1 \)

\(F(N) = F(N - 2) + F(N - 1) \)

Given this definition, we say that \(F(N) \) is well-defined because

- it eventually stops recursing
 for all \(N \geq 0 \),
- or, equivalently, \(F(N) \) satisfying the equations is unique for all \(N \geq 0 \).

Some Sequences are Not Well-Defined

This sequence is not well-defined:

\[
\begin{align*}
G(0) &= 1 \\
G(N) &= \left[G(N - 1) + G(N + 1) \right] / 2
\end{align*}
\]

What can \(G(N) \) be?

\[
\begin{align*}
1, 1, 1, 1, 1, 1, 1, \ldots \\
1, 2, 3, 4, 5, 6, 7, \ldots
\end{align*}
\]

The possibilities are infinite.

\(G(N) \) is not well-defined.
Recursive Functions Must Be Well-Defined for Computers

If you write a recursive function that is not well-defined, don’t expect a computer to choose. As you know, computers are dumb. Some well-defined recursive functions may still be difficult or impossible to express in a computer language.

How Did you Solve the Maze?

How did you know?

And, more importantly...

...can you teach my computer?

We Can Use a Tree to Solve the Problem

Maybe you used a tree? (When we run out of ways to go, we won’t have found the exit.)
Represent the Maze with an Array of Bit Vectors

We can represent the maze with an array:

```c
static uint8_t maze[10][10];
```

Each space in the array is a bit vector composed of the following bits:
- `1` – the space has a left wall
- `2` – the space has a right wall
- `4` – the space has an upper wall
- `8` – the space has a lower wall
- `16` – the space is the exit

Do You Understand the Representation?

(Reminder: L=1, R=2, U=4, D=8, E=16)

For example,
- `maze[0][0]` is `7 (1 | 2 | 4)`
- `maze[0][1]` is `9`
- `maze[3][1]` is `3`
- `maze[4][2]` is `7`
- `maze[2][2]` is `29`

Outline for a Recursive Solution

Let’s solve the problem recursively.

Here’s the approach:
- Keep track of reachable locations.
- Write a function to mark one location as reachable.
- Within the function, call the same function to mark all “children” (adjacent reachable neighbors) as reachable.

Represent Reachable Locations with a Second Array

Track reachable locations with a second array:

```c
static uint8_t found[10][10];
```

Each element is either:
- `0` – the space has not been found/reached
- `1` – the space has been found/reached

And we use one variable for the exit:

```c
static int32_t saw_exit;
```

(Both of these should be initialized to all 0s.)
Ready to Write the Recursive Function

Now we’re ready to write the function. Here’s a signature:

\[\text{void can_reach (int x, int y);} \]

The function should:

- set all locations reachable from \((x,y)\) to 1 in \(\text{found}\), and
- set \(\text{saw_exit}\) to 1 iff the exit is reachable from \((x,y)\).

(To do so, the function will call itself.)

Mark as Reachable, then Check Children

\[\text{void can_reach (int x, int y);} \]

\[\begin{align*}
\text{found}[x][y] &= 1; \\
\text{if} \ (0 == (\text{maze}[x][y] & 1)) \{} \\
\text{can_reach} \ (x - 1, y); \\
\text{\} \text{No left wall?}
\end{align*} \]

\[\begin{align*}
\text{if} \ (0 == (\text{maze}[x][y] \& 2)) \{} \\
\text{can_reach} \ (x + 1, y); \\
\text{\} \\
\text{Space to left is reachable.}
\end{align*} \]

Same Check and Marking for Right Child (Value 2)

\[\text{void can_reach (int x, int y);} \]

\[\begin{align*}
\text{found}[x][y] &= 1; \\
\text{if} \ (0 == (\text{maze}[x][y] \& 1)) \{} \\
\text{can_reach} \ (x - 1, y); \text{No right wall?} \\
\text{\} \\
\text{if} \ (0 == (\text{maze}[x][y] \& 2)) \{} \\
\text{can_reach} \ (x + 1, y); \\
\text{\} \\
\text{Space to right is reachable.}
\end{align*} \]

Same Check and Marking for Upper Child (Value 4)

\[\begin{align*}
\text{if} \ (0 == (\text{maze}[x][y] \& 4)) \{} \\
\text{can_reach} \ (x, y - 1); \text{No upper wall?} \\
\text{\} \\
\text{if} \ (0 == (\text{maze}[x][y] \& 8)) \{} \\
\text{can_reach} \ (x, y + 1); \\
\text{\} \\
\text{if} \ (0 != (\text{maze}[x][y] \& 16)) \{} \\
\text{saw_exit} = 1; \\
\text{\} \\
\text{Space above is reachable.}
\end{align*} \]
Does Our **can_reach** Function Answer My Question?

How do we use **can_reach** to answer my question about getting from (0,0) to the exit?
1. Fill **found** and **saw_exit** with 0s.
2. Call **can_reach** (0, 0).
3. Check **saw_exit**.

Does it work?

Maybe There’s a Bug?

Let’s try it!

(Are you still mad about my asking you to write all of Fibonacci?)
When Should We Stop Recursing?

What’s the problem?
In math,
◦ we used base cases
◦ to stop the recursion.
In a C function,
◦ we need a stopping condition
◦ to stop the recursion.
So: when should we stop?

Stop if the Space Has Already Been Marked as Reachable

Stop if we already reached (x,y).

```c
void can_reach (int x, int y) {
    if (found[x][y]) { return; }
    found[x][y] = 1;
    if (0 == (maze[x][y] & 1)) {
        can_reach (x - 1, y);
    }
}
```

Review: Induction, Bit-Slicing, Recursion

As mentioned in 120, the following are closely related mathematically
◦ proof by induction
◦ bit-sliced hardware design
◦ recursion.
In all three, one
◦ solves a small piece of a problem, then
◦ combines it with the “rest” of the solution
◦ (which is also solved as small pieces).

A General Strategy for Recursion

Here’s a general strategy for recursion.

```c
_____ recursive ( _____ )
{
    // Check stopping conditions.
    // Handle one node.
    // Handle children.
}
```

These may be swapped.