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Recursion

Writing the Fibonacci Sequence

Anyone remember the Fibonacci sequence?
1,1,2,3,5,8,13, ...
Can anyone write the whole sequence?
(The rest of us can be done for today!)

How about this way: F(0) =1
F1)=1
FIN) =F(N-2)+ F(N-1)

This answer is a recursive definition, a
function defined in terms of itself.
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Fibonacci Sequence is Well-Defined

Some Sequences are Not Well-Defined

Fibonaceci: F(0) = 1
F1)=1
FIN)=F(IN-2)+ F(N-1)
Given this definition, we say that F(N)
ois well-defined because
°it eventually stops recursing
for all N >0,
cor, equivalently, F(N) satisfying the
equations is unique for all N > 0.

This sequence is not well-defined:

G(0)=1
GIN)=[GIN-1)+GN+1)]/2

What can G(N) be?
1,1,1,1,1,1, 1, ...
1,2,3,4,5,6,17,...
The possibilities are infinite.
G(N) is not well-defined.
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Recursive Functions Must Be Well-Defined for Computers

Time for the Today’s “Help Prof. Lumetta” Problem!

If you

owrite a recursive function

othat is not well-defined,

°don’t expect a computer to choose.

As you know, computers are dumb.

Some well-defined recursive functions
°may still be difficult or impossible to express
°in a computer language.

I need your help again.

If T build a new house
°as a maze ...

o... like that ...

°can I go from (0,0)
-to the exit at E?

y coordinate
w N Rr o
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How Did you Solve the Maze?

How did you know?

And, more importantly...

...can you teach my computer?

We Can Use a Tree to Solve the Problem

@ Maybe you used a tree?

(When we run out of ways to go,
we won’t have found the exit.)

X coordinate
@ 012 3 4
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y coordinate
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Represent the Maze with an Array of Bit Vectors

We can represent the maze with an array:
static uint8 t maze[10][10];

Each space in the array is a bit vector
composed of the following bits:

o/ 1 —the space has a left wall

o/l 2 — the space has a right wall

o/l 4 — the space has an upper wall

o// 8 — the space has a lower wall

°// 16 — the space is the exit

Do You Understand the Representation?
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(Reminder: L=1, R=2, U=4, D=8, E=16)
For example,
°-maze[0][0] is 7 (1 | 2 | 4)
°maze[0] [1] is
cmaze[3][1] is
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°maze[4] [2] is 7 o
°maze[2] [2] is 29 51
o 2
o
o3
>
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Outline for a Recursive Solution

Let’s solve the problem recursively.

Here’s the approach:
- Keep track of reachable locations.
> Write a function to mark

one location as reachable.

o Within the function, call

the same function to
mark all “children”
(adjacent reachable
neighbors) as reachable.

X coordinate
012 3 4

y coordinate
w N P O

Represent Reachable Locations with a Second Array
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Track reachable locations with a second array:
static uint8_t found[10][10];

Each element is either:
> — the space has not been found/reached
o1 — the space has been found/reached
And we use one variable for the exit:
static int32 t saw_exit;

(Both of these should be initialized to all 0s.)
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Now we'’re ready to write the function.
Here’s a signature:

void can_reach (int x, int y);

The function should

>set all locations reachable from (x,y)
to 1 in found, and

oset saw exit to 1 iff the exit is
reachable from (x,y).

(To do so, the function will call itself.)
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void can_reach (int x, int y

if ((0 == maze[x][y] & 2)) {
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void can_reach (int x, int y)
{

found[x] [y] = 1;

if (0 == (maze[x][y] & 1)) {
can_reach (x - 1, y);
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if

}

if (0 == (maze[x][y]
can_reach (x, y +|[1);

}

if (0 !'= (maze[x][y]
saw_exit = 1;

16)) {
}
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Same Check and Marking for Lower Child (Value 8)

Finally, Check and Mark Exit (Value 16)

if (0 == (maze[x][yl & 4)) { No
can_reach (x, y - 1); lower

} wall?

if (0 == (maze[x][y] & 8)) {
can_reach (x, y + 1);

}

if (0 !'= (maze[x][y] & 16)) {
saw_exit = 1;

}

} Space below is reachable.

if (0 == (maze[x][y] & 4)) {
can reach (x, y - 1);

}

if (0 == (maze[x][y] & 8)) {
can _reach (x, y + 1);

}

if (0 !'= (maze[x][y] & 16)) {

saw exit = 1; .
— Exit

J here?

} Record having seen exit.
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Does Our can_reach Function Answer My Question?

Maybe There’s a Bug?

How do we use can_reach to answer my
question about getting from (0,0) to the exit?

1. Fill found and saw_exit with Os.
2. Call can_reach (0,0).
3. Check saw_exit.

X coordinate
012 3 4

Does it work?

y coordinate
w N Rk o

Let’s try it!
@ (Are you still mad about my asking
you to write all of Fibonacci?)

X coordinate
@ ° 01 2 3 4
(o) g,
51
) ::
o
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When Should We Stop Recursing?

What’s the problem?

In math,
owe used base cases
°to stop the recursion.

In a C function,
owe need a stopping condition
°to stop the recursion.

So: when should we stop?

Stop if the Space Has Already Been Marked as Reachable

Stop if we already reached (x,y).

void can_reach (int x, int y)
{
if (found[x][y]) { return; }
found[x] [y] = 1;
if (0 == (maze[x][y] & 1)) {
can_reach (x - 1, y);

}
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Review: Induction, Bit-Slicing, Recursion

As mentioned in 120, the following are
closely related mathematically

e proof by induction
obit-sliced hardware design
°recursion.

In all three, one

osolves a small piece of a problem, then
ocombines it with the “rest” of the solution
o (which is also solved as small pieces).

A General Strategy for Recursion

Here’s a general strategy for recursion.

recursive ( )
{
// Check stopping conditions.
// Handle one node.
// Handle children.
These may
} be swapped.
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