3/6/2018

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Recursion

Writing the Fibonacci Sequence

Anyone remember the Fibonacci sequence?
1,1,2,3,5,8,13, ...
Can anyone write the whole sequence?
(The rest of us can be done for today!)

How about this way: F(0) =1
F1)=1
FIN) =F(N-2)+ F(N-1)

This answer is a recursive definition, a
function defined in terms of itself.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 1

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 2

Fibonacci Sequence is Well-Defined

Some Sequences are Not Well-Defined

Fibonaceci: F(0) = 1
F1)=1
FIN)=F(IN-2)+ F(N-1)
Given this definition, we say that F(N)
ois well-defined because
°it eventually stops recursing
for all N >0,
cor, equivalently, F(N) satisfying the
equations is unique for all N > 0.

This sequence is not well-defined:

G(0)=1
GIN)=[GIN-1)+GN+1)]/2

What can G(N) be?
1,1,1,1,1,1, 1, ...
1,2,3,4,5,6,17,...
The possibilities are infinite.
G(N) is not well-defined.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 3

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 4

3/6/2018

Recursive Functions Must Be Well-Defined for Computers

Time for the Today’s “Help Prof. Lumetta” Problem!

If you

owrite a recursive function

othat is not well-defined,

°don’t expect a computer to choose.

As you know, computers are dumb.

Some well-defined recursive functions
°may still be difficult or impossible to express
°in a computer language.

I need your help again.

If T build a new house
°as a maze ...

o... like that ...

°can I go from (0,0)
-to the exit at E?

y coordinate
w N Rr o

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 5

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 6

How Did you Solve the Maze?

How did you know?

And, more importantly...

...can you teach my computer?

We Can Use a Tree to Solve the Problem

@ Maybe you used a tree?

(When we run out of ways to go,
we won’t have found the exit.)

X coordinate
@ 012 3 4

e-Q_&

W N BPL O

)
)

y coordinate

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 7

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 8

Represent the Maze with an Array of Bit Vectors

We can represent the maze with an array:
static uint8 t maze[10][10];

Each space in the array is a bit vector
composed of the following bits:

o/ 1 —the space has a left wall

o/l 2 — the space has a right wall

o/l 4 — the space has an upper wall

o// 8 — the space has a lower wall

°// 16 — the space is the exit

Do You Understand the Representation?

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 9

(Reminder: L=1, R=2, U=4, D=8, E=16)
For example,
°-maze[0][0] is 7 (1 | 2 | 4)
°maze[0] [1] is
cmaze[3][1] is

©
x
Q
o}
)
=
=)
o]
—
®

w

20
°maze[4] [2] is 7 o
°maze[2] [2] is 29 51
o 2
o
o3
>

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 10

Outline for a Recursive Solution

Let’s solve the problem recursively.

Here’s the approach:
- Keep track of reachable locations.
> Write a function to mark

one location as reachable.

o Within the function, call

the same function to
mark all “children”
(adjacent reachable
neighbors) as reachable.

X coordinate
012 3 4

y coordinate
w N P O

Represent Reachable Locations with a Second Array

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 11

Track reachable locations with a second array:
static uint8_t found[10][10];

Each element is either:
> — the space has not been found/reached
o1 — the space has been found/reached
And we use one variable for the exit:
static int32 t saw_exit;

(Both of these should be initialized to all 0s.)

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 12

3/6/2018

Now we'’re ready to write the function.
Here’s a signature:

void can_reach (int x, int y);

The function should

>set all locations reachable from (x,y)
to 1 in found, and

oset saw exit to 1 iff the exit is
reachable from (x,y).

(To do so, the function will call itself.)

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 13

void can_reach (int x, int y

if ((0 == maze[x][y] & 2)) {

3/6/2018

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 14

void can_reach (int x, int y)
{

found[x] [y] = 1;

if (0 == (maze[x][y] & 1)) {
can_reach (x - 1, y);

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 15

if

}

if (0 == (maze[x][y]
can_reach (x, y +|[1);

}

if (0 !'= (maze[x][y]
saw_exit = 1;

16)) {
}

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 16

3/6/2018

Same Check and Marking for Lower Child (Value 8)

Finally, Check and Mark Exit (Value 16)

if (0 == (maze[x][yl & 4)) { No
can_reach (x, y - 1); lower

} wall?

if (0 == (maze[x][y] & 8)) {
can_reach (x, y + 1);

}

if (0 !'= (maze[x][y] & 16)) {
saw_exit = 1;

}

} Space below is reachable.

if (0 == (maze[x][y] & 4)) {
can reach (x, y - 1);

}

if (0 == (maze[x][y] & 8)) {
can _reach (x, y + 1);

}

if (0 !'= (maze[x][y] & 16)) {

saw exit = 1; .
— Exit

J here?

} Record having seen exit.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 17

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 18

Does Our can_reach Function Answer My Question?

Maybe There’s a Bug?

How do we use can_reach to answer my
question about getting from (0,0) to the exit?

1. Fill found and saw_exit with Os.
2. Call can_reach (0,0).
3. Check saw_exit.

X coordinate
012 3 4

Does it work?

y coordinate
w N Rk o

Let’s try it!
@ (Are you still mad about my asking
you to write all of Fibonacci?)

X coordinate
@ ° 01 2 3 4
(o) g,
51
) ::
o
©3
>

)

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 19

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 20

When Should We Stop Recursing?

What’s the problem?

In math,
owe used base cases
°to stop the recursion.

In a C function,
owe need a stopping condition
°to stop the recursion.

So: when should we stop?

Stop if the Space Has Already Been Marked as Reachable

Stop if we already reached (x,y).

void can_reach (int x, int y)
{
if (found[x][y]) { return; }
found[x] [y] = 1;
if (0 == (maze[x][y] & 1)) {
can_reach (x - 1, y);

}

3/6/2018

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 21

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 22

Review: Induction, Bit-Slicing, Recursion

As mentioned in 120, the following are
closely related mathematically

e proof by induction
obit-sliced hardware design
°recursion.

In all three, one

osolves a small piece of a problem, then
ocombines it with the “rest” of the solution
o (which is also solved as small pieces).

A General Strategy for Recursion

Here’s a general strategy for recursion.

recursive ()
{
// Check stopping conditions.
// Handle one node.
// Handle children.
These may
} be swapped.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 23

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 24

