
2/28/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Testing the Nonogram Code

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Let’s Talk About Testing the Nonogram Code

What about MP4, the nonogram solver?
Corner cases? (such as 1 0 0 0 1)
Zero and non-zero region combinations?
Regions that are
◦ all X’s,
◦ part X’s and part blanks, and
◦ all blanks?

Other cases?
What about paths through your code?

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Example Nonogram Code Solution

Let’s work through an example solution
◦adapted from a real student’s code
(not a student at Illinois).

◦The code earned 90% of the
functionality points using my tester.

Let’s
◦ start with code reading, then
◦ create tests to cover the code.

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

Nothing Surprising in the First Part

#include <stdio.h>

#include "mp4.h"

int32_t print_row
(int32_t r1, int32_t r2,
int32_t r3, int32_t r4,
int32_t width)

{

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

Were you expecting to see comments?

2/28/2018

2

num is the
number

of non-zero
regions.

Uses an array to
record region sizes.

Initial Code Illuminates Variable Usage

int i, j, a, num = 0;
int u[4];
u[0] = r1;
u[1] = r2;
u[2] = r3;
u[3] = r4;
for (i = 0; 4 > i; i++) {

if (0 != u[i]) {
num++;

}
}

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Space needed for
regions (left) and for

gaps (right) must
fit within width.

Control flow done
strangely here, but

it works.

Bizarre Control Flow, But Return Values Seem Ok

if (r1 + r2 + r3 + r4 + num - 1
> width) {
return 0;

} else {
// print
// the row

}
printf ("\n");
return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

a is the extra space in the row.

Print
regions
one at a

time.

Regions are Printed One by One (Using Array u)

// code to print the row
a = width – (r1 + r2 + r3 +

r4 + num - 1);

for (i = 0; 4 > i; i++) {
// print one region

}

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Start Each Region with Zero or More Blank Spaces

if (a > u[i]) {
for (j = 0; u[i] > j; j++) {

printf (".");
}

} else {
for (j = 0; a > j; j++) {

printf (".");
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

Start by printing
min (a, u[i])

blank spaces.

2/28/2018

3

Print a gap if
this region is not the last non-zero (left)

and this region is non-zero (right).

Region appears with a fewer X’s.

Print the Region and Maybe a Gap

for (j = 0; u[i] - a > j; j++) {

printf ("X");

}

if ((num - 1) > i && 0 != u[i]) {

printf (".");

}

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

After the Last Region, Print Extra Spaces

if (i == 3) {

for (j = 0; a > j; j++) {

printf(".");

}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

After end of last region, print a
extra blanks (should be done
unconditionally after the loop).

See Any Bugs?

Did you notice the bug(s)?

I saw one, but let’s see if covering the code
exposes something.

Let’s walk through the code again and see
what tests we need.

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

We need at least one
non-zero region to

execute this line (so any
valid input suffices).

Need a Test with at Least One Non-Zero Region

int i, j, a, num = 0;
int u[4];
u[0] = r1;
u[1] = r2;
u[2] = r3;
u[3] = r4;
for (i = 0; 4 > i; i++) {

if (0 != u[i]) {
num++;

}
}

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

2/28/2018

4

We need a test
that doesn’t fit in

width.

And a test
that does.

Need Tests that Do and Do Not Fit in width

if (r1 + r2 + r3 + r4 + num - 1
> width) {
return 0;

} else {
// print
// the row

}
printf ("\n");
return 1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

No Requirements for this Block of Code

// code to print the row
a = width – (r1 + r2 + r3 +

r4 + num - 1);

for (i = 0; 4 > i; i++) {
// print one region

}

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

All code on this slide always executes.

We need a
non-zero region
smaller than a.

And a region as
large as a non-
zero value of a.

Two More Requirements for These Loops

if (a > u[i]) {
for (j = 0; u[i] > j; j++) {

printf (".");
}

} else {
for (j = 0; a > j; j++) {

printf (".");
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

Need a region larger than a.

First region (for which i has value 0) is
always non-zero.

So we need >1 non-zero region.

Print the Region and Maybe a Gap

for (j = 0; u[i] - a > j; j++) {

printf ("X");

}

if ((num - 1) > i && 0 != u[i]) {

printf (".");

}

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

2/28/2018

5

No New Requirements for this Block of Code

if (i == 3) {

for (j = 0; a > j; j++) {

printf(".");

}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

No new requirements here,
since we already need
a non-zero value of a.

Summary of Tests Needed to Cover All Code

1. Regions that do not fit in width.
2. Regions that do fit in width.
3. A non-zero region smaller than extra space.
4. A region as least as large as

non-zero extra space.
5. A region larger than extra space.
6. More than one non-zero region.
Notice that covering the code does not even
require a zero region (so it’s not really enough).

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

Use Corner Cases When Possible

Try to use corner cases. For example,
◦ for #1 (regions that do not fit in width),
◦ let’s make the regions 1 too large.
◦Say 1, 2, 3, and 4, which needs width 13,
◦ so we’ll set width to 12.

Test #1: 1 2 3 4 12, which should fail.

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

Try to Minimize Human Work, Too

For requirement #2 (regions that fit),
◦a corner case (an exact fit),
◦means no empty space,
precluding requirements #3 and #4,

◦ so let’s try to reduce tests instead.

Let’s choose extra space as 2.

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

2/28/2018

6

One More Test Satisfies All Other Requirements!

Given an extra space of 2,
◦ requirement #3 means that
one region should be 1, and

◦a region of 3 satisfies
requirements #4 and #5.

Together, the two regions above satisfy #6.
So we could try…
Test #2: 1 3 0 0 7, which should

print "....X..\n".

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

Let’s Try the Code on Our Coverage Tests

As you see, we need only two tests to cover all
of the code.
Let’s try them…
Test #1: 1 2 3 4 12, which should fail.
Test #2: 1 3 0 0 7, which should

print "....X..\n".

The code passes both tests!

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

Can We Cover Code Blocks that Are Empty?

Let’s be slightly more thorough.
When we see
◦an if statement with an else,
◦we cover both then and else blocks.

Did we cover else blocks that do nothing?

Let’s take a look.

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

We need at least one
zero region to execute
the “else” (but we have
zero regions in test #2).

Need a Test with at Least One Zero Region

int i, j, a, num = 0;
int u[4];
u[0] = r1;
u[1] = r2;
u[2] = r3;
u[3] = r4;
for (i = 0; 4 > i; i++) {

if (0 != u[i]) {
num++;

}
}

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

2/28/2018

7

There are four possibilities
for these two conditions.

Four Possibilities for Two Conditions

for (j = 0; u[i] - a > j; j++) {

printf ("X");

}

if ((num - 1) > i && 0 != u[i]) {

printf (".");

}

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

How Many Cases Does Test #2 Cover?

Test #2: 1 3 0 0 7

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

num – 1 > i 0 != u[i] Test #2?
false false
false true
true false
true true region 1

region 2
regions 3 & 4

not covered

We Need to Add One More Test

7. A zero region with index (0, 1, 2, 3) less
than the number of non-zero regions – 1.

We can’t make the first region zero-length,
◦ so the region index must be at least 1,
◦and the number of non-zero regions
must be at least 3.

Let’s make a tight fit (a corner case), too…
Test #3: 1 0 2 3 8, which should

print "X.XX.XXX\n".

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

Let’s Try the Code on Our Coverage Tests

Let’s try the last test…
Test #1: 1 2 3 4 12, which should fail.
Test #2: 1 3 0 0 7, which should

print "....X..\n".
Test #3: 1 0 2 3 8, which should

print "X.XX.XXX\n".
The code fails the third test!

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

2/28/2018

8

What is Wrong with the Code?

if ((num - 1) > i && 0 != u[i]) {
printf (".");

}

What’s wrong?
The programmer confused the region index
i with the index among non-zero regions.
All but the last non-zero region should be
followed by a gap, but i also counts zero
regions.

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

How to Fix the Bug

To fix the bug quickly, we can
◦add a separate variable non_zero
to index non-zero regions,

◦ initialize non_zero to 0 when i is set to 0,
◦ increment non_zero only when
we see a non-zero region, and

◦compare non_zero to (num – 1)
to decide whether to print a gap.

© 2018 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

Fixing the Bug

Here’s how it might look
(except for declaration and initialization).

if (0 != u[i] &&
(num - 1) > non_zero++) {
printf (".");

}
With this change, the code passes

all 6,391 of my tests as well.

© 2018 Steven S. Lumetta. All rights reserved. slide 31ECE 220: Computer Systems & Programming

Fixing the Bug

Alternatively,
◦ compress zero regions out at the start,
◦ making the false equivalence true.

for (i = 0; 4 > i; i++) {
if (0 != u[i]) {

num++;
}

}
for (i = num; 4 > i; i++) {

u[i] = 0;
}

© 2018 Steven S. Lumetta. All rights reserved. slide 32ECE 220: Computer Systems & Programming

u[num++] = u[i];

