
2/21/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Error Taxonomy

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Specification Left Some Issues Unaddressed

Does your think-pair-share solution
work if the human types no values

(starts with -1)?

No (fewer than 1% of students have
identified the issue while solving this

problem).

Why not?

Our specification did not
cover this possibility!

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Specification Ambiguities Can be Hard to Find

This type of error is
◦ called a specification ambiguity
◦ (not in P&P’s taxonomy—we will add it).

Why did it happen?
Why didn’t you define the interface fully?

People can’t think of everything.

Specification ambiguities are difficult to
uncover (no one thought of them).

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

Ask Someone to Help you Spot Bugs in Your Code

What else do our think-pair-shares teach us?
Code reading!

Caveat:
◦ writing on paper/chalkboard
◦ under time pressure
◦ is not the best way to produce error-free code.

However, even when
◦ coding leisurely
◦ with computer tools to help,
◦ someone else is more likely to spot
mistakes.

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

2/21/2018

2

How to Make Code Reading Successful

1. Get a friend (not in the same class, unless
>1 person is allowed on assignment!).

2. Friend SITS AT KEYBOARD and reads
your code.

3. You sit nearby and answer questions or
provide minor guidance.

4. Code must be neat and well-
commented (unless you’re trying to lose
the friend).

5. Did you read point #2?

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Error Taxonomy Relates to Abstraction Layers

© 2016 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Problems/Tasksspecification ambiguities

Algorithmsalgorithmic errors

Computer Language
semantic errors

syntax errors

d
iff

ic
ul

ty

usually hard to find

usually easy to find

Examples of Specification Ambiguities

Let’s start from the top.

Specification Ambiguities

Examples include
◦unspecified elements (as in t-p-s),
◦assumptions buried in code (Ariane 5),
◦assumptions forgotten/misused
◦ choices made differently but never
communicated

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Avoid Assumptions, and Document Any That You Make

Avoid assumptions when possible:
◦ if an assumption saves 10 lines of code,
◦ just write the extra code
(don’t make the assumption).

Document any assumptions
◦ that you must make, and
◦ communicate them to others.

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

2/21/2018

3

Assert Requirements and Avoid Overloading Meaning

Assert all requirements
◦ (usually at module boundaries),
◦meaning that if a requirement is not met,
◦crash the program
(deliberately and immediately).

Avoid overloading meaning.
◦What does print_square (-10) mean?
◦Draw a triangle of size 10?
◦ (No!)

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Algorithmic Errors are Algorithms that Fail

What is an algorithmic error?

◦Use of an algorithm that
does not solve the problem.

◦There are two types:
◦ logical and
◦numerical.

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

A Great New Idea: Loop Swap Sort!

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

78 3 4 9

Compare pairs from left to right.

Swap iff right value smaller than left value.

swap

83

Loop Swap Sort! (Step 2)

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

73 8 4 9

Compare pairs from left to right.

Swap iff right value smaller than left value.

swap

84

2/21/2018

4

Loop Swap Sort! (Step 3)

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

73 4 8 9

Compare pairs from left to right.

Swap iff right value smaller than left value.

swap

87

Loop Swap Sort! (Step 4)

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

83 4 7 9

Compare pairs from left to right.

Swap iff right value smaller than left value.

don’t swap
All done!

N items in N-1 steps!

Counterexample for Loop Swap Sort

Try “loop swap sort” on these...

… oops.

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

12 4 1

Loop Swap Sort is an Example of an Algorithmic Error

“Loop swap sort”
◦ is an example of a
logical algorithmic error.

The algorithm
◦works on some inputs
◦but not in general.

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

2/21/2018

5

Algorithmic Errors are Hard to Find

Algorithmic errors are also hard to find.

Why?

Had programmer
◦ thought of an input
◦ for which the algorithm fails,
◦ the programmer would have chosen a
different algorithm!

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

What Day is It?

I need your help again…

220 midterms are on Thursdays.

This year,
Valentine’s Day

fell on Wednesday.

What about next year?

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

Time for Some Computation

How many days in a year?

How many days in a week?

What’s 365 % 7?

So …

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

365

7

1

A Different Day … Every Seven Years?

14 Feb 2017 Tuesday

14 Feb 2018 Wednesday

14 Feb 2019 Thursday

14 Feb 2020 Friday

14 Feb 2021 Saturday

…

14 Feb 2026 Thursday

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

Correct!

Right?

Still right?

2/21/2018

6

Example of Numerical Algorithmic Error

What do you mean, “leap year?”

Oh … so … in some years,
we change by two days of the week?

That’s an example of a fairly simple
numerical algorithmic error.

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

Example of Numerical Algorithmic Error

Here’s a story about a more complex one…

In the mid-1990s,
◦US National Labs were moving from
◦Cray supercomputers to MPPs.*

They wanted some assurance that their
programs produced the same results.

*Massively parallel processors, supercomputers
built from collections of smaller nodes.

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

Example of Numerical Algorithmic Error

At the Supercomputing conference in 1995
(or maybe it was 1996),
◦David Abramson presented “differential
debugging:”

◦ run a program on both machines and
compare the results visually.

Then he said (paraphrased from memory),
◦ “I didn’t write this example code.
◦ I just want to show you how differential
debugging works.”

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

Example of Numerical Algorithmic Error

As I recall, he showed results from a code that
◦predicted how smog (air pollution)
◦ changed over time
◦ in the LA basin.

The two machines
◦produced results of predicted smog
(parts per million of particulate matter)

◦ that differed by 30%.

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

2/21/2018

7

Example of Numerical Algorithmic Error

Using differential debugging,
◦ they were able
◦ to find the cause of the problem.

Any guesses?

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

Example of Numerical Algorithmic Error

On one machine, IEEE floating-point
operations rounded up.

On the other machine, they rounded down.

One part in millions (or maybe even less)
became 30% error.

The code was unstable.

That’s an example of a numerical
algorithmic error.

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

Test with Corner Cases and Use a Debugger

Test with corner cases:
◦ execute loops 0 or 1 times,
◦ examine equality case for loop tests,
◦ check both directions on conditionals, and
◦ think about possible overflows.

Walk through all paths for all code
◦ in a debugger,
◦ setting state as necessary
◦ (required by some companies).

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

Numerical Errors are Hard: Take a Class

Numerical errors are much harder!

Test corners cases for small code
sections.

Use analysis for whole programs.*

*Take a numerical analysis class, such as ECE491.

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

2/21/2018

8

Examples of Semantic Errors

Semantic errors are
◦mistakes in implementation and are
◦ often typographic / small.

Code to print numbers from 1 to 10…

int32_t i;

for (i = 0; 10 >= i; i++); {
printf ("%s\n", &i);

}

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

Avoiding and Fixing Semantic Errors

Walk through code in a debugger.

Use regression testing
◦Bugs tend to resurface (more than one
person makes the same mistake).

◦Every time someone finds a bug,
add a test that exposes the bug.

◦Pass all tests before committing
changes.

© 2018 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

Syntax Errors and How to Avoid Them

Syntax errors are
◦Errors caught by a compiler a
◦ (as errors or warnings).

Easy to avoid and fix:
◦Turn on all warnings (-Wall).
◦Fix all warnings and errors…
◦…but NOT by guessing!

© 2018 Steven S. Lumetta. All rights reserved. slide 31ECE 220: Computer Systems & Programming

Summary of Techniques

1. Use code reading
(and/or pair programming).

2. Avoid making assumptions.

3. Document assumptions.
4. Assert requirements.

5. Avoid overloading meaning.

6. Test corner cases.

7. Walk through all paths in debugger.

8. Use regression tests.

© 2018 Steven S. Lumetta. All rights reserved. slide 32ECE 220: Computer Systems & Programming

2/21/2018

9

Good Testing and Debugging Takes Time

Note that many of these techniques are
◦ standard in industry, but
◦ fairly time-consuming, so
◦you may put off trying them
while you’re a student.

© 2018 Steven S. Lumetta. All rights reserved. slide 33ECE 220: Computer Systems & Programming

