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Specification Left Some Issues Unaddressed

Does your think-pair-share solution
work if the human types no values

(starts with -1)?

No (fewer than 1% of students have 
identified the issue while solving this 

problem).

Why not?

Our specification did not
cover this possibility!
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Specification Ambiguities Can be Hard to Find

This type of error is 
◦ called a specification ambiguity
◦ (not in P&P’s taxonomy—we will add it).

Why did it happen?
Why didn’t you define the interface fully?

People can’t think of everything.

Specification ambiguities are difficult to 
uncover (no one thought of them).
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Ask Someone to Help you Spot Bugs in Your Code

What else do our think-pair-shares teach us?
Code reading!

Caveat:
◦ writing on paper/chalkboard 
◦ under time pressure 
◦ is not the best way to produce error-free code.

However, even when
◦ coding leisurely
◦ with computer tools to help,
◦ someone else is more likely to spot 
mistakes.
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How to Make Code Reading Successful

1. Get a friend (not in the same class, unless 
>1 person is allowed on assignment!).

2. Friend SITS AT KEYBOARD and reads 
your code.

3. You sit nearby and answer questions or 
provide minor guidance.

4. Code must be neat and well-
commented (unless you’re trying to lose 
the friend).

5. Did you read point #2?
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Error Taxonomy Relates to Abstraction Layers
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Problems/Tasksspecification ambiguities

Algorithmsalgorithmic errors

Computer Language
semantic errors

syntax errors

d
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usually hard to find

usually easy to find

Examples of Specification Ambiguities

Let’s start from the top.

Specification Ambiguities

Examples include
◦unspecified elements (as in t-p-s),
◦assumptions buried in code (Ariane 5),
◦assumptions forgotten/misused
◦ choices made differently but never 
communicated
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Avoid Assumptions, and Document Any That You Make

Avoid assumptions when possible:
◦ if an assumption saves 10 lines of code,
◦ just write the extra code 
(don’t make the assumption).

Document any assumptions
◦ that you must make, and 
◦ communicate them to others.
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Assert Requirements and Avoid Overloading Meaning

Assert all requirements
◦ (usually at module boundaries),
◦meaning that if a requirement is not met,
◦crash the program 
(deliberately and immediately).

Avoid overloading meaning.
◦What does print_square (-10) mean?
◦Draw a triangle of size 10?
◦ (No!)
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Algorithmic Errors are Algorithms that Fail

What is an algorithmic error?

◦Use of an algorithm that 
does not solve the problem.

◦There are two types:
◦ logical and
◦numerical.

© 2018 Steven S. Lumetta.  All rights reserved. slide 10ECE 220: Computer Systems & Programming

A Great New Idea: Loop Swap Sort!
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78 3 4 9

Compare pairs from left to right.

Swap iff right value smaller than left value.

swap

83

Loop Swap Sort! (Step 2)
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73 8 4 9

Compare pairs from left to right.

Swap iff right value smaller than left value.

swap

84
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Loop Swap Sort! (Step 3)
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Compare pairs from left to right.

Swap iff right value smaller than left value.

swap

87

Loop Swap Sort! (Step 4)
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83 4 7 9

Compare pairs from left to right.

Swap iff right value smaller than left value.

don’t swap
All done!

N items in N-1 steps!

Counterexample for Loop Swap Sort

Try “loop swap sort” on these...

… oops.
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Loop Swap Sort is an Example of an Algorithmic Error

“Loop swap sort”
◦ is an example of a
logical algorithmic error.

The algorithm
◦works on some inputs
◦but not in general.
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Algorithmic Errors are Hard to Find

Algorithmic errors are also hard to find.

Why?

Had programmer 
◦ thought of an input 
◦ for which the algorithm fails, 
◦ the programmer would have chosen a 
different algorithm!
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What Day is It?

I need your help again…

220 midterms are on Thursdays.

This year, 
Valentine’s Day 

fell on Wednesday.

What about next year?
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Time for Some Computation

How many days in a year?

How many days in a week?

What’s 365 % 7?

So …
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365

7

1

A Different Day … Every Seven Years?

14 Feb 2017 Tuesday

14 Feb 2018 Wednesday

14 Feb 2019 Thursday

14 Feb 2020 Friday

14 Feb 2021 Saturday

…

14 Feb 2026 Thursday
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Correct!

Right?

Still right?
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Example of Numerical Algorithmic Error

What do you mean, “leap year?”

Oh … so … in some years, 
we change by two days of the week?

That’s an example of a fairly simple
numerical algorithmic error.
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Example of Numerical Algorithmic Error

Here’s a story about a more complex one…

In the mid-1990s,
◦US National Labs were moving from
◦Cray supercomputers to MPPs.*

They wanted some assurance that their 
programs produced the same results.

*Massively parallel processors, supercomputers
built from collections of smaller nodes.
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Example of Numerical Algorithmic Error

At the Supercomputing conference in 1995
(or maybe it was 1996),
◦David Abramson presented “differential 
debugging:”

◦ run a program on both machines and 
compare the results visually.

Then he said (paraphrased from memory),
◦ “I didn’t write this example code.
◦ I just want to show you how differential 
debugging works.”
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Example of Numerical Algorithmic Error

As I recall, he showed results from a code that
◦predicted how smog (air pollution)
◦ changed over time
◦ in the LA basin.

The two machines
◦produced results of predicted smog
(parts per million of particulate matter)

◦ that differed by 30%.
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Example of Numerical Algorithmic Error

Using differential debugging,
◦ they were able 
◦ to find the cause of the problem.

Any guesses?
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Example of Numerical Algorithmic Error

On one machine, IEEE floating-point 
operations rounded up.

On the other machine, they rounded down.

One part in millions (or maybe even less) 
became 30% error.

The code was unstable.

That’s an example of a numerical 
algorithmic error.
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Test with Corner Cases and Use a Debugger

Test with corner cases:
◦ execute loops 0 or 1 times,
◦ examine equality case for loop tests, 
◦ check both directions on conditionals, and
◦ think about possible overflows.

Walk through all paths for all code
◦ in a debugger,
◦ setting state as necessary
◦ (required by some companies).
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Numerical Errors are Hard: Take a Class

Numerical errors are much harder!

Test corners cases for small code 
sections.

Use analysis for whole programs.*

*Take a numerical analysis class, such as ECE491.
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Examples of Semantic Errors

Semantic errors are
◦mistakes in implementation and are
◦ often typographic / small.

Code to print numbers from 1 to 10…

int32_t i;

for (i = 0; 10 >= i; i++); {
printf ("%s\n", &i);

}
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Avoiding and Fixing Semantic Errors

Walk through code in a debugger.

Use regression testing
◦Bugs tend to resurface (more than one 
person makes the same mistake).

◦Every time someone finds a bug, 
add a test that exposes the bug.

◦Pass all tests before committing 
changes.
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Syntax Errors and How to Avoid Them

Syntax errors are
◦Errors caught by a compiler a
◦ (as errors or warnings).

Easy to avoid and fix:
◦Turn on all warnings (-Wall).
◦Fix all warnings and errors…
◦…but NOT by guessing!
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Summary of Techniques

1. Use code reading
(and/or pair programming).

2. Avoid making assumptions.

3. Document assumptions.
4. Assert requirements.

5. Avoid overloading meaning.

6. Test corner cases.

7. Walk through all paths in debugger.

8. Use regression tests.
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Good Testing and Debugging Takes Time

Note that many of these techniques are
◦ standard in industry, but
◦ fairly time-consuming, so
◦you may put off trying them 
while you’re a student.
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