
2/19/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Arrays

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Arrays are Groups of Values Named Using an Index

In MP4,
◦you have to handle four regions
◦with sizes given as r1, r2, r3, and r4.

In some larger nonograms, a row
or column may have 20 regions.

So for MP6 …

… let’s talk about arrays!

(Instead of r1, r2, … , r20.)

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Arrays are Contiguous in Memory; Indices Use Brackets

In C, one declares an array of 20 ints as

int region[20];

The compiler allocates memory
◦ to hold 20 ints
◦ called region[0]
through region[19],

◦as illustrated to the right.

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

region[0]

region[1]

region[18]

region[19]

.
.

.

Pointer Arithmetic Moves Among Array Elements

int region[20];

The expression region
◦has type int*
◦and points to region[0].

The expression region + N
◦points to region[N]
◦ (called pointer arithmetic).

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

region[0]

region[1]

region[18]

region[19]

.
.

.

region

region + 19

2/19/2018

2

Brackets are Shorthand for Add and Dereference

int region[20];

Thus,
◦region[N] and
◦*(region + N)
◦are equivalent in C.

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

region[0]

region[1]

region[18]

region[19]

.
.

.

region

region + 19

Use Brackets for Reading and Writing Array Elements

int region[20];
int a;

Thus
◦ a = region[19];
◦ reads the value at
address region + 19.

And
◦ region[19] = a;
◦ stores bits to
address region + 19.

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

region[0]

region[1]

region[18]

region[19]

.
.

.

region

region + 19

Pointer Arithmetic Generally Involves Multiplication

int region[20];

Say that region is address 0x12345000.
What is region + 5?

0x12345005? Not necessarily.

The answer depends on
◦ the size of an int and
◦ the addressability of memory.

The amount added is the number
of addresses required for 5 ints.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Pass Array Arguments as Pointers

Let’s do an example. Our task:
◦ write a subroutine
◦ to find the minimum value
◦ in an array of int32_ts.

How can we pass the array
to the subroutine?

Copy it onto the stack?
Expensive!

Instead, pass a pointer to the first element!

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

2/19/2018

3

same as int32_t const* values

An Address Does Not Define an Array Length

int32_t min_value

(int32_t const values[]);

Look good?

How can min_value know the array size?

As shown, it cannot.

So …?

Add a second parameter for the length.

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

In loop body, check goes
from 1 to n_values – 1.

Assume first value
is smallest.

Finding Minimum Value with a C Function

int32_t min_value
(int32_t const values[], int32_t n_values)

{
int32_t min = values[0];
int32_t check;
for (check=1; n_values > check; check++) {

if (min > values[check]) {
min = values[check];

}
}
return min;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

If smaller value found,
copy value to min.

Return smallest value found.

Finding Minimum Value with a C Function

int32_t min_value
(int32_t const values[], int32_t n_values)

{
int32_t min = values[0];
int32_t check;
for (check=1; n_values > check; check++) {

if (min > values[check]) {
min = values[check];

}
}
return min;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

Holds 42 after
assignment.

Initializes array to
values shown.

length of
my_nums

pointer to
my_nums[0]

Using Our Minimum Value Function

How do we use the function?

int32_t my_nums[4] =
{93, 100, 79, 42};

int32_t least;

least = min_value (my_nums, 4);

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

2/19/2018

4

LC-3 Stack Frame for min_value

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

Note that values
(type int const*)
takes only one
memory location.

previous frame pointer

return address

return value
(2 locations for int32_t)

R5→

n_values
(2 locations for int32_t)

values

min
(2 locations for int32_t)

check
(2 locations for int32_t)

R6→

Strings Can Be Stored in Arrays of chars

Strings are like (and can be stored in)
arrays of chars.

Unfortunately, we must choose a size
for an array.
char name[20];
printf ("Hi, what is your name?");
if (1 == scanf ("%s", name)) {

printf ("Hello, %s!\n", name);
}

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

Array Bounds are Not Checked in C

char name[20];

printf ("Hi, what is your name?");

if (1 == scanf ("%s", name)) {

printf ("Hello, %s!\n", name);

}

What happens if human user types more?

Hopefully, the program crashes…

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

LC-3 Stack Frame for Current Function

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

Typed “name” can
overwrite return
address.
Where does it point?
Anywhere the
user wants!
Including into the
code they just
wrote into your
machine.

previous frame pointer

return address

return value

R5→

parameters

name[19]

name[18]

name[17]

...

m
al

ic
io

us
co

de

* *

2/19/2018

5

Buffer Overrun Attacks Used to Dominate Vulnerabilities

This type of attack is
◦a buffer overrun attack,
◦ the dominant software vulnerability
◦ for many years.

Microsoft went through 50 million lines
of code to try to eliminate them.
Recent OS changes have also helped:
◦ reduced ability to execute code on stack, and
◦ randomization of code location.

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

* *
Use Field Width to Make scanf Safe

char name[20];
printf ("Hi, what is your name?");
if (1 == scanf ("%19s", name)) {

printf ("Hello, %s!\n", name);
}

Use field width 19* to limit input to
19 characters (need 1 char for NUL).

*Solutions (such as this one) that require humans
to maintain them are error-prone.

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

Impromptu Survey on Phone Books

How many of you have …

◦…used a phone book?

◦…seen a phone book?

◦…heard of phone books?

Just wondered.

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

How Do We Search When Values are Sorted?

Imagine that you have
◦an array of integers
◦ sorted in numerically increasing order.

How do you check whether
◦a particular integer
◦appears in the array?

Let’s write a C function and return either
◦ the index of the desired value, or
◦ -1 if the value is not in the array.

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

2/19/2018

6

length of array

a sorted
array

of integers
number to find in array

initialize search bounds
[low,high] to [0,len – 1]

Parameters and Local Variables for Binary Search

int32_t binary_search
(int32_t array[], int32_t len,
int32_t value)

{

int32_t low = 0;
int32_t high = len – 1;
int32_t mid;

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

Look in the middle …
but why this way?

Value not found:
return -1.

Keep looking until we have no place to look.

Main Iteration: Look Once, Then Adjust Bounds

while (high >= low) {
mid = low + (high – low) / 2;

// look at one value
// and adjust bounds

}
return -1;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

Bugs Can Be Subtle and Hide for Decades

Are these two expressions equivalent?
low + (high – low) / 2

(low + high) / 2

No ...
◦but for 20+ years,
◦ library code for binary search
◦used the second expression.

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

Sums Can Overflow, Producing Negative Array Indices

low + (high – low) / 2

(low + high) / 2

Consider the following:
◦ 0 ≤ low < 231 and 0 ≤ high < 231, and
◦ low ≤ high, so 0 ≤ (high – low) < 231 *

What about low + high?
Overflow can produce mid < 0 !

*Technically, one needs to couple this
argument with a proof by induction.

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

2/19/2018

7

Loop Body: Find Value, or Adjust One Bound

while (high >= low) {
mid = low + (high – low) / 2;
if (value == array[mid]) {

return mid; // Found!
}
if (value < array[mid]) {

high = mid – 1;
} else {

low = mid + 1;
}

}

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

Can Use Arrays of Arrays for Multidimensional Data

One can create arrays of arrays. For example,
int32_t blk[3][5];

allocates an array of 3 arrays of 5 int32_ts.

The expressions blk and blk[0]
◦ have the same value
◦ but blk[0] has type int32_t*
◦ while blk has type int32_t (*)[5]
◦ (pointer to an array of 5 int32_ts)

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

Remember: Pointer Arithmetic Depends on Size

What happens when we add 1…

… to blk[0]?
(same as before)

…to blk?
(points to next array of 5)

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

blk and blk[0]

blk + 1

blk[0][0]

blk[0][1]

blk[1][1]

. . .

blk[0][2]

blk[0][3]

blk[0][4]

blk[1][0]

blk[0] + 1

Often Need to Map Multidimensional Data by Hand

You will use multidimensional arrays in MP6.

In later MPs,
◦array dimensions are not known in advance,
◦ so your program must
◦perform the mapping into 1D.

For example, in MP8,
◦an image is height × width pixels,
◦but height and width are variables.

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

2/19/2018

8

Multiply “Larger” Dimension by Size of Smaller

We choose which dimension to map first.

Here, row index y is
multiplied by width:

(x,y) → y * width + x

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

. . .

0 1 2 3

1
0

4

2
3

(logical
view)

image[0]

image[1]

image[6]

. . .

image[2]

image[3]

image[4]

image[5]

(layout
in

memory)

Let’s Have Some Fun

Time for some fun…

Let’s play cards!

You can teach me …

… how to sort my hand.

© 2018 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

position
to insert

card to
insert

number sorted
(after loop body)

the number of cards

the cards (each 0 to 12)

Parameters and Local Variables for Insertion Sort

void insertion_sort

(int32_t values[], int32_t num_vals)

{

int32_t sorted, current, index;

© 2018 Steven S. Lumetta. All rights reserved. slide 31ECE 220: Computer Systems & Programming

Sort one card at a time.

Done when num_vals
cards are sorted.

One card is always
sorted, so start with 2.

Main Loop: Sort One Card at a Time Until All are Sorted

for (sorted = 2; num_vals >= sorted;

sorted++) {

// insert one more card

}

© 2018 Steven S. Lumetta. All rights reserved. slide 32ECE 220: Computer Systems & Programming

loop invariant: before loop body,
first (sorted – 1) cards are sorted

2/19/2018

9

After inner loop, index is
correct position for new card.

New card is at position (sorted – 1).

Loop Body: Find the Place to Insert the New Card

current = values[sorted – 1];

// find place to insert new card

values[index] = current;

© 2018 Steven S. Lumetta. All rights reserved. slide 33ECE 220: Computer Systems & Programming

Move card
over if new

card is smaller.

Check one position per
iteration.

Position cannot be < 0.

Look first at new card’s original position.

Loop Over Possible Positions Until Correct One is Found

for (index = sorted – 1; 0 < index;

index--) {

// check possible position

values[index] =

values[index – 1];

}

© 2018 Steven S. Lumetta. All rights reserved. slide 34ECE 220: Computer Systems & Programming

Position Check Simply Compares Card Values

if (current >= values[index – 1]) {

break;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 35ECE 220: Computer Systems & Programming

If the new card’s value is at least as great as the
card in the previous position, stop searching.

Reference Copy of Insertion Sort

void insertion_sort (int32_t values[], int32_t num_vals)
{

int32_t sorted, current, index;
for (sorted = 2; num_vals >= sorted; sorted++) {

current = values[sorted – 1];
for (index = sorted – 1; 0 < index; index--) {

if (current >= values[index – 1]) {
break;

}
values[index] = values[index – 1];

}
values[index] = current;

}
}

© 2018 Steven S. Lumetta. All rights reserved. slide 36ECE 220: Computer Systems & Programming

2/19/2018

10

Let’s Try It! Start with Some Arguments

void insertion_sort
(int32_t values[], int32_t num_vals)

© 2018 Steven S. Lumetta. All rights reserved. slide 37ECE 220: Computer Systems & Programming

num_vals is 5

12 14 9 8values

0 1 2 3 4

Our Local Variables are Not Initialized

int32_t sorted, current, index;
What’s in these variables?
Bits!

© 2018 Steven S. Lumetta. All rights reserved. slide 38ECE 220: Computer Systems & Programming

num_vals is 5

12 14 9 8values

0 1 2 3 4

First Loop Iteration (First Card is Sorted Already)

for (sorted = 2; num_vals >= sorted;
sorted++) {

Is num_vals >=
sorted?

© 2018 Steven S. Lumetta. All rights reserved. slide 39ECE 220: Computer Systems & Programming

num_vals is 5

12 14 9 8values

0 1 2 3 4

sorted
Yes!

Time to Insert the 4 at the Right Position

current = values[sorted – 1];
Huh? What’s in values[1]?
Still 4, but, logically, it’s ‘empty.’

© 2018 Steven S. Lumetta. All rights reserved. slide 40ECE 220: Computer Systems & Programming

bits
current num_vals is 5

12 14 9 8values

0 1 2 3 4

sorted4

2/19/2018

11

4

Find the Right Place for the 4

for (index = sorted – 1; 0 < index;
index--) {

Is 0 < index?

© 2018 Steven S. Lumetta. All rights reserved. slide 41ECE 220: Computer Systems & Programming

current num_vals is 5

12 19 8values

0 1 2 3 4

sortedindex

Yes!

4

Compare 4 with 12

if (current >= values[index – 1]) {
break;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 42ECE 220: Computer Systems & Programming

current num_vals is 5

12 19 8values

0 1 2 3 4

sortedindex

Is 4 >= 12? No.

4

Copy 12 from Position 0 to Position 1

values[index] = values[index – 1];

© 2018 Steven S. Lumetta. All rights reserved. slide 43ECE 220: Computer Systems & Programming

current num_vals is 5

12 19 8values

0 1 2 3 4

sortedindex

12

4

Update and Test Again

for (index = sorted – 1; 0 < index;
index--) {

Is 0 < index?

© 2018 Steven S. Lumetta. All rights reserved. slide 44ECE 220: Computer Systems & Programming

current num_vals is 5

19 8values

0 1 2 3 4

sortedindex

12

index

No. This loop is done.

2/19/2018

12

4

Place New Card in “Blank” Position (index)

values[index] = current;

© 2018 Steven S. Lumetta. All rights reserved. slide 45ECE 220: Computer Systems & Programming

current num_vals is 5

19 8values

0 1 2 3 4

sorted

12

index

4

Update and Test Again (First 2 Cards Now Sorted)

for (sorted = 2; num_vals >= sorted;
sorted++) {

Is num_vals >= sorted?

© 2018 Steven S. Lumetta. All rights reserved. slide 46ECE 220: Computer Systems & Programming

current num_vals is 5

19 8values

0 1 2 3 4

sorted

12

index

Yes.

4

sorted

Time to Insert the 9 at the Right Position

current = values[sorted – 1];

© 2018 Steven S. Lumetta. All rights reserved. slide 47ECE 220: Computer Systems & Programming

current num_vals is 5

4 112 9 8values

0 1 2 3 4

9 index sorted 9

Find the Right Place for the 9

for (index = sorted – 1; 0 < index;
index--) {

Is 0 < index?

© 2018 Steven S. Lumetta. All rights reserved. slide 48ECE 220: Computer Systems & Programming

current num_vals is 5

4 112 8values

0 1 2 3 4

Yes!

sortedindex index

2/19/2018

13

9

Compare 9 with 12

if (current >= values[index – 1]) {
break;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 49ECE 220: Computer Systems & Programming

current num_vals is 5

4 112 8values

0 1 2 3 4

Is 9 >= 12? No.

sortedindex 9

Copy 12 from Position 1 to Position 2

values[index] = values[index – 1];

© 2018 Steven S. Lumetta. All rights reserved. slide 50ECE 220: Computer Systems & Programming

current num_vals is 5

4 1 8values

0 1 2 3 4

12

sortedindex

12

9

Update and Test Again

for (index = sorted – 1; 0 < index;
index--) {

Is 0 < index?

© 2018 Steven S. Lumetta. All rights reserved. slide 51ECE 220: Computer Systems & Programming

current num_vals is 5

112 8values

0 1 2 3 4

index

4
Yes.

sortedindex 9

Compare 9 with 4

if (current >= values[index – 1]) {
break;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 52ECE 220: Computer Systems & Programming

current num_vals is 5

4 112 8values

0 1 2 3 4

Is 9 >= 4? Yes, so break.

index sorted

2/19/2018

14

9

Place New Card in “Blank” Position (index)

values[index] = current;

© 2018 Steven S. Lumetta. All rights reserved. slide 53ECE 220: Computer Systems & Programming

current num_vals is 5

112 8values

0 1 2 3 4

4 9

index sorted

Update and Test Again (First 3 Cards Now Sorted)

for (sorted = 2; num_vals >= sorted;
sorted++) {

Is num_vals >= sorted?

© 2018 Steven S. Lumetta. All rights reserved. slide 54ECE 220: Computer Systems & Programming

current num_vals is 5

112 8values

0 1 2 3 4

9
Yes.

4

sorted sortedindex

Time to Insert the 1 at the Right Position

current = values[sorted – 1];

© 2018 Steven S. Lumetta. All rights reserved. slide 55ECE 220: Computer Systems & Programming

current num_vals is 5

4 19 12 8values

0 1 2 3 4

1 index sorted 1

Find the Right Place for the 1

for (index = sorted – 1; 0 < index;
index--) {

Is 0 < index?

© 2018 Steven S. Lumetta. All rights reserved. slide 56ECE 220: Computer Systems & Programming

current num_vals is 5

4 9 12 8values

0 1 2 3 4

Yes!

index sortedindex

2/19/2018

15

1

Compare 1 with 12

if (current >= values[index – 1]) {
break;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 57ECE 220: Computer Systems & Programming

current num_vals is 5

4 9 12 8values

0 1 2 3 4

Is 1 >= 12? No.

sortedindex 1

Copy 12 from Position 2 to Position 3

values[index] = values[index – 1];

© 2018 Steven S. Lumetta. All rights reserved. slide 58ECE 220: Computer Systems & Programming

current num_vals is 5

4 12 8values

0 1 2 3 4

9 12

sortedindex

1

Update and Test Again

for (index = sorted – 1; 0 < index;
index--) {

Is 0 < index?

© 2018 Steven S. Lumetta. All rights reserved. slide 59ECE 220: Computer Systems & Programming

current num_vals is 5

12 8values

0 1 2 3 4

94
Yes.

index sortedindex 1

Compare 1 with 9

if (current >= values[index – 1]) {
break;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 60ECE 220: Computer Systems & Programming

current num_vals is 5

4 129 8values

0 1 2 3 4

Is 1 >= 9? No.

sortedindex

2/19/2018

16

1

Copy 9 from Position 1 to Position 2

values[index] = values[index – 1];

© 2018 Steven S. Lumetta. All rights reserved. slide 61ECE 220: Computer Systems & Programming

current num_vals is 5

4 12 8values

0 1 2 3 4

9 9

sortedindex 1

Update and Test Again

for (index = sorted – 1; 0 < index;
index--) {

Is 0 < index?

© 2018 Steven S. Lumetta. All rights reserved. slide 62ECE 220: Computer Systems & Programming

current num_vals is 5

129 8values

0 1 2 3 4

4
Yes.

index sortedindex

1

Compare 1 with 4

if (current >= values[index – 1]) {
break;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 63ECE 220: Computer Systems & Programming

current num_vals is 5

4 129 8values

0 1 2 3 4

Is 1 >= 4? No.

sortedindex 1

Copy 4 from Position 0 to Position 1

values[index] = values[index – 1];

© 2018 Steven S. Lumetta. All rights reserved. slide 64ECE 220: Computer Systems & Programming

current num_vals is 5

4 129 8values

0 1 2 3 4

4

sortedindex

2/19/2018

17

1

Update and Test Again

for (index = sorted – 1; 0 < index;
index--) {

Is 0 < index?

© 2018 Steven S. Lumetta. All rights reserved. slide 65ECE 220: Computer Systems & Programming

current num_vals is 5

129 8values

0 1 2 3 4

4

index sortedindex

No. This loop is done.

1

Place New Card in “Blank” Position (index)

values[index] = current;

© 2018 Steven S. Lumetta. All rights reserved. slide 66ECE 220: Computer Systems & Programming

current num_vals is 5

129 8values

0 1 2 3 4

41

index sorted

Update and Test Again (First 4 Cards Now Sorted)

for (sorted = 2; num_vals >= sorted;
sorted++) {

Is num_vals >= sorted?

© 2018 Steven S. Lumetta. All rights reserved. slide 67ECE 220: Computer Systems & Programming

current num_vals is 5

129 8values

0 1 2 3 4

4
Yes.

1

sorted

sorted is 5

index

Time to Insert the 8 at the Right Position

current = values[sorted – 1];

© 2018 Steven S. Lumetta. All rights reserved. slide 68ECE 220: Computer Systems & Programming

current num_vals is 5

1 124 9 8values

0 1 2 3 4

8
sorted is 5

index

2/19/2018

18

8

Find the Right Place for the 8

for (index = sorted – 1; 0 < index;
index--) {

Is 0 < index?

© 2018 Steven S. Lumetta. All rights reserved. slide 69ECE 220: Computer Systems & Programming

current num_vals is 5

1 124 9values

0 1 2 3 4

Yes!

sorted is 5

index index 8

Compare 8 with 12

if (current >= values[index – 1]) {
break;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 70ECE 220: Computer Systems & Programming

current num_vals is 5

1 124 9values

0 1 2 3 4

Is 8 >= 12? No.

sorted is 5

index

8

Copy 12 from Position 3 to Position 4

values[index] = values[index – 1];

© 2018 Steven S. Lumetta. All rights reserved. slide 71ECE 220: Computer Systems & Programming

current num_vals is 5

1 129values

0 1 2 3 4

4 12

sorted is 5

index 8

Update and Test Again

for (index = sorted – 1; 0 < index;
index--) {

Is 0 < index?

© 2018 Steven S. Lumetta. All rights reserved. slide 72ECE 220: Computer Systems & Programming

current num_vals is 5

9 12values

0 1 2 3 4

41
Yes.

index

sorted is 5

index

2/19/2018

19

8

Compare 8 with 9

if (current >= values[index – 1]) {
break;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 73ECE 220: Computer Systems & Programming

current num_vals is 5

1 4 9 12values

0 1 2 3 4

Is 8 >= 9? No.

sorted is 5

index 8

Copy 9 from Position 2 to Position 3

values[index] = values[index – 1];

© 2018 Steven S. Lumetta. All rights reserved. slide 74ECE 220: Computer Systems & Programming

current num_vals is 5

1 9 12values

0 1 2 3 4

4 9

sorted is 5

index

8

Update and Test Again

for (index = sorted – 1; 0 < index;
index--) {

Is 0 < index?

© 2018 Steven S. Lumetta. All rights reserved. slide 75ECE 220: Computer Systems & Programming

current num_vals is 5

9 12values

0 1 2 3 4

41
Yes.

index

sorted is 5

index 8

Compare 8 with 4

if (current >= values[index – 1]) {
break;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 76ECE 220: Computer Systems & Programming

current num_vals is 5

1 94 12values

0 1 2 3 4

Is 8 >= 4?

sorted is 5

index

Yes, so break.

2/19/2018

20

8

Place New Card in “Blank” Position (index)

values[index] = current;

© 2018 Steven S. Lumetta. All rights reserved. slide 77ECE 220: Computer Systems & Programming

current num_vals is 5

9 12values

0 1 2 3 4

41 8

sorted is 5

index

Update and Test Again (First 5 Cards Now Sorted)

for (sorted = 2; num_vals >= sorted;
sorted++) {

Is num_vals >= sorted?

© 2018 Steven S. Lumetta. All rights reserved. slide 78ECE 220: Computer Systems & Programming

current num_vals is 5

98 12values

0 1 2 3 4

4
No. We’re done.

1

sorted is 5sorted is 6

index

Time for Another Think-Pair-Share

As before, let’s do a group exercise in lecture.

The process:
1. I give you a problem.
2. You form groups of 3-4 people.
3. Talk about ways to solve the problem.
4. Once enough of the groups have finished,

one group volunteers to share their
answer.

5. We go over the group’s answer together.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 79ECE 220: Computer Systems & Programming

The Task: Calculate Average of a List of Numbers

The task…
◦ Allow a user to enter up to 5 numbers (not -1).
◦ End the list by typing -1 (not include in list).
◦ Find and print average of user’s numbers.

One half of the class writes main.

The other half writes calc_avg.

Let’s use
int32_t calc_avg

(int32_t const array[], int32_t len);

slide 80ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved.

