
2/17/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Pointers

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

A Pointer is Simply a Memory Address

As you know, it’s often convenient
◦ to use pointers to values
(memory addresses)

◦ rather than the values themselves.

Examples of use include
◦arguments that can be modified,
◦ strings, and
◦ “events” (or any structured data).

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Pointer Types Used in the Same Way as Primitive Types

In C,
◦a pointer to a type X
◦has type X*.

The following thus declare…

int* iptr; // pointer to int, and

char* cptr; // pointer to char.

Note: read pointer types from right to left.

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

Declaring a Pointer Only Makes Space for a Pointer

int* iptr; // iptr points to an int

Three important points about pointer types:
◦iptr is a memory address (bits required
depends on addressability of memory);

◦compiler knows type and thus can
interpret bits at memory address iptr;

◦ if program needs storage for int
(something to which iptr might point),
declare it separately.

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

2/17/2018

2

char* Used to Point to NUL-Terminated Strings

char* cptr = "My favorite string";

In C, a char*
◦ can point to a string,
◦ (or just to a single character in memory), but
◦ does not include space for the string.

In declaration above,
◦ string is a constant
◦ stored in global data area by the compiler.
◦ cptr is then written with … what?
◦ … the address of the letter 'M'.

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Pitfall: * Associates with Variable, Not Type

If one declares variables in one line, as in

int * A, B;

A has type int*.

What about B?

B has type int.

(Be careful, and be clear in your code.)

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Dereferencing Produces Value to Which Pointer Points

C provides two operators for pointers:

* the dereference operator

& the address operator

Dereferencing a pointer evaluates to
the value to which the pointer points.

char* cptr = "My favorite string";

For example, *cptr evaluates to 'M'.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Pitfall: Avoid Condensing Expressions to Illegibility

One cannot dereference a non-pointer
type (meaningless, so compiler gives error).

Dereference and multiply use same character.
Compiler chooses operator from context:
◦dereference is unary: * <a pointer>, but
◦multiplication is binary: <expr> * <expr>.

Write your code so that humans need not
pretend to be compilers!
Example: (*A) * (*B), not *A**B

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

2/17/2018

3

& Produces Address at Which Expression is Stored

& the address operator

You have used address operator with scanf.

Address operator evaluates to
◦ the address of an expression
◦ (usually a variable).

char* cptr = "My favorite string";

For example, &cptr evaluates to
the address at which cptr is stored.

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

& Only Usable with Expressions that Have Addresses

char* cptr = "My favorite string";

What about this one?

&&cptr

&cptr not known to be stored anywhere, so
expression above gives error.

However, *(*(&cptr))

evaluates to 'M'.

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

Can Also Use Pointers to Pointers

char* cptr = "My favorite string";

What if we want to store &cptr?

What is the type?

Pointer to pointer to char.
(remember LDI/STI?)

So: char** cptr_ptr = &cptr;

And **cptr evaluates to what?

'M'

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

Understanding Pointers is Critical

How useful are pointers?

Rare to find anything but toy programs
that does not use pointers

(albeit hidden by many high-level languages).

How useful are pointers to pointers?

Useful in a wide range of applications;
you will use them often

(but as above, you may not know it).

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

2/17/2018

4

Don’t Overdo It: You Know What a Memory Address Is

How useful are pointers
to pointers to pointers?

I think I’ve seen them used.

How useful are pointers
to pointers to pointers to pointers?

Great tool for testing whether students
understand pointers. Otherwise useless.

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

Example: Compare Two Strings

Let’s do an example.
Let’s compare two strings.
// Return 1 if equal, 0 otherwise.
int string_equal

(char* s1, char* s2);

String comparison
◦ is available in C’s standard library,
◦but used to be a routine interview question
◦ to check whether the applicant had a clue.

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

Good Code for Comparing Two Strings?

int string_equal

(char* s1, char* s2)

{

return (s1 == s2);

}

What do you think?

Maybe not what we want.

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

…strings
also differ.

Also at end of s2?

If characters
differ…

Advance string pointers.

End of s1 yet?

ASCII
NUL
in C

Code for Comparing Two Strings

int string_equal
(char* s1, char* s2)

{
while ('\0' != *s1) {

if (*s1 != *s2) { return 0; }
s1++;
s2++;

}
return ('\0' == *s2);

}

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

2/17/2018

5

Example Use of String Comparison Code

What is printed by the code below?
char* w = "word1";

char* x = "word2";

printf ("%d\n",

string_equal (w, x));

printf ("%s %s\n", w, x);

First, let’s execute the function.

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

Execution Example for String Comparison

while ('\0' != *s1) {
if (*s1 != *s2) { return 0; }
s1++; s2++;

}
return ('\0' == *s2);

char* w = "word1";
char* x = "word2";

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

Where does s1 start?

Where does s2 start?

s1

s2

Execute Loop and If Statement Tests

while ('\0' != *s1) {
if (*s1 != *s2) { return 0; }
s1++; s2++;

}
return ('\0' == *s2);

char* w = "word1";
char* x = "word2";

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

What is *s1?

What is *s2?

s1

s2

'w' (not NUL)

also 'w’ (don’t return 0)

Advance s1 and s2 to Point to Next Characters

while ('\0' != *s1) {
if (*s1 != *s2) { return 0; }
s1++; s2++;

}
return ('\0' == *s2);

char* w = "word1";
char* x = "word2";

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

Advance s1.

And advance s2.

s1

s2

s1

s2

2/17/2018

6

Execute Loop and If Statement Tests

while ('\0' != *s1) {
if (*s1 != *s2) { return 0; }
s1++; s2++;

}
return ('\0' == *s2);

char* w = "word1";
char* x = "word2";

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

What is *s1?

What is *s2?

'o' (not NUL)

also ‘o’ (don’t return 0)

s1

s2

Advance s1 and s2 to Point to Next Characters

while ('\0' != *s1) {
if (*s1 != *s2) { return 0; }
s1++; s2++;

}
return ('\0' == *s2);

char* w = "word1";
char* x = "word2";

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

Advance s1.

And advance s2.

s1

s2

s1

s2

Execute Loop and If Statement Tests

while ('\0' != *s1) {
if (*s1 != *s2) { return 0; }
s1++; s2++;

}
return ('\0' == *s2);

char* w = "word1";
char* x = "word2";

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

What is *s1?

What is *s2?

'r' (not NUL)

also ‘r’ (don’t return 0)

s1

s2

Advance s1 and s2 to Point to Next Characters

while ('\0' != *s1) {
if (*s1 != *s2) { return 0; }
s1++; s2++;

}
return ('\0' == *s2);

char* w = "word1";
char* x = "word2";

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

Advance s1.

And advance s2.

s1

s2

s1

s2

2/17/2018

7

Execute Loop and If Statement Tests

while ('\0' != *s1) {
if (*s1 != *s2) { return 0; }
s1++; s2++;

}
return ('\0' == *s2);

char* w = "word1";
char* x = "word2";

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

What is *s1?

What is *s2?

'd' (not NUL)

also ‘d’ (don’t return 0)

s1

s2

Advance s1 and s2 to Point to Next Characters

while ('\0' != *s1) {
if (*s1 != *s2) { return 0; }
s1++; s2++;

}
return ('\0' == *s2);

char* w = "word1";
char* x = "word2";

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

Advance s1.

And advance s2.

s1

s2

s1

s2

Execute Loop and If Statement Tests

while ('\0' != *s1) {
if (*s1 != *s2) { return 0; }
s1++; s2++;

}
return ('\0' == *s2);

char* w = "word1";
char* x = "word2";

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

What is *s1?

What is *s2?

'1' (not NUL)

‘2’ … so return 0!

s1

s2

So?

Now We Know the First Line of Output

What is printed by the code below?
char* w = "word1";

char* x = "word2";

printf ("%d\n",

string_equal (w, x));

printf ("%s %s\n", w, x);

first line of output: 0

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

2/17/2018

8

What about
this line?

What Does the Second printf Print?

What is printed by the code below?
char* w = "word1";

char* x = "word2";

printf ("%d\n",

string_equal (w, x));

printf ("%s %s\n", w, x);

first line of output: 0

second line of output: word1 word2

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

Changes to Parameters Do Not Affect Caller’s Variables

printf ("%d\n",

string_equal (w, x));

But string_equal changes s1 and s2!
Why don’t w and x change?

Remember: C uses call by value.
Values of w and x are passed.
w and x cannot be changed.

But *w and *x can be changed…

© 2018 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

Function Can Modify Bits at Addresses Passed by Value

while ('\0' != *s1) {
if (*s1 != *s2) {

*s1 = *s2 = '\0';
return 0;

}
s1++; s2++;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 31ECE 220: Computer Systems & Programming

Add some new code!

What Does the Second printf Print Now?

How does the change affect the output?
char* w = "word1";

char* x = "word2";

printf ("%d\n",

string_equal (w, x));

printf ("%s %s\n", w, x);

first line of output: 0

second line of output: word1 word2

© 2018 Steven S. Lumetta. All rights reserved. slide 32ECE 220: Computer Systems & Programming

2/17/2018

9

Nor s2.

Does not use s1
to modify memory.

Use const to Indicate Read-Only Behavior

int string_equal
(char const* s1, char const* s2)

{
while ('\0' != *s1) {

if (*s1 != *s2) { return 0; }
s1++;
s2++;

}
return ('\0' == *s2);

}

© 2018 Steven S. Lumetta. All rights reserved. slide 33ECE 220: Computer Systems & Programming

read right to left:
pointer to constant char

Pointer Variables are No Different than Other Variables

One last pointer topic: NULL pointers.

What’s the bug in this code?
int* ptr;
scanf ("%d", ptr);

Hint: ptr has automatic storage class.

What’s in ptr when scanf is called?

Bits.

© 2018 Steven S. Lumetta. All rights reserved. slide 34ECE 220: Computer Systems & Programming

Two Ways to Fix the Bug

Two ways to fix.

1. Our traditional way: don’t use pointers…
int value;
scanf ("%d", &value);

2. Declare an int, too:
int value;
int* ptr = &value;
scanf ("%d", ptr);

© 2018 Steven S. Lumetta. All rights reserved. slide 35ECE 220: Computer Systems & Programming

Motivation for a Special Pointer Value: Point to Nothing

What if we want to initialize an int*
pointer, but we don’t have an int yet?

Leave the int* filled with bits?

How can a C function tell that a pointer
parameter points to nothing?

Generally, it can’t.

(Nearly any bit pattern
can be a memory address.)

© 2018 Steven S. Lumetta. All rights reserved. slide 36ECE 220: Computer Systems & Programming

2/17/2018

10

Using the 0 Bit Pattern for NULL Has Several Benefits

Define NULL as pointer
that points to nothing.

Benefits (assuming initialization to NULL)

1. Compare with NULL to
check for invalid pointers.

2. Use all 0 bit pattern (so a pointer
is true if valid, false if not valid).

3. Dereferencing NULL on most systems*
crashes the program.

*Not true on many microcontrollers, however.

© 2018 Steven S. Lumetta. All rights reserved. slide 37ECE 220: Computer Systems & Programming

Pitfall: Mental Overload of Nullification

Keep in mind
◦ NUL is an ASCII character.
◦ NULL is a pointer (to nothing).
◦ “null” is an English word.
◦ 0 is a number.

They are all associated with 0
and bit patterns containing only 0s.

But they’re not the same.*

Don’t confuse them.
*In some languages, “NULL” is written “null.” Go figure.

© 2018 Steven S. Lumetta. All rights reserved. slide 38ECE 220: Computer Systems & Programming

