
2/12/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Stack Frames Revisited

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Recall Why ISAs Define Calling Conventions

A compiler must systematically transform
function calls into assembly instructions.

Why systematically?
1. The compiler is a computer program:

that’s all it can do!
2. Code generated by different compilers

should interoperate, so those compilers
must make the same choices for
subroutine call interfaces.

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

data for main
data for foo

data for
current function

. .
 .

Recall the LC-3 Calling Convention

R0-R3: caller-saved
R4: global data pointer
R5: frame
pointer
R6: stack
pointer
R7: return
address

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

system space

system space

code

stack

global data
heap

(dynamically
allocated)

R4→

R6→

R5→

Recall the Structure of the LC-3 Stack Frame

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

caller’s stack frame

previous frame pointer
return address

return value

local variables

parameters

R6 points to
top of stack.
R5 points to
bottom of
local variables.
R5+0, -1, … are
local variables.
R5+4, +5, … are
parameters.

R6→

R5→
R5+1
R5+2
R5+3
R5+4

R5+0

2/12/2018

2

How are Arguments Pushed in C?

What is the order of parameters?
For example, given the call

my_func (A, B, C);

Should a compiler place
◦A on top of the stack?
◦Or C on top of the stack?
◦Or does the choice not matter?

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Arguments Must Be Passed in the Right Order

First answer: Of course it matters!

How could one compiler generate the call,
and a second compiler generate the function,

if the order were not fixed?

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Again, How are Arguments Pushed in C?

my_func (A, B, C);

So, do arguments get pushed
◦ left to right, or
◦ right to left?

You should be able to answer.
Remember that C functions
◦ can accept variable numbers of parameters.
◦and must be able to figure out how many
arguments have been passed.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Compilers Can Optimize within a Function

Stack frame use inside a function
◦ is not an interface issue,
◦ so compilers can optimize.

For example, compilers can
◦place variables in registers,
◦avoid saving and restoring R7
(for example, if no subroutines are called), or

◦avoid creating a stack frame at all!

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

2/12/2018

3

Is R5 – R6 a Constant Inside a Function?

One common question:
◦why use both R5 and R6?*
◦ (Aren’t R5 and R6 always
the same distance apart?)

One answer:
◦ code adds/removes values from the stack
◦ (so, no, the difference is not constant).

*Note that the x86 (IA-32) ISA calling
convention also uses two registers.

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Compiler Does Know R5 – R6 Most of the Time

What kinds of things are pushed?
◦ callee-saved registers
◦arguments to subroutines
◦ spilled values (when compiler runs out of
registers for performing calculations)

◦ certain types of temporary allocation
(not covered in our class—see alloca).

But—except for the last case—the compiler
KNOWS when R6 moves, so it could still
generate the right code…

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

Compiler Often Does Not Provide Such Information

However, information about R6’s movement
is often not passed to a debugger.
So …
◦ you can turn on high levels of optimization
◦and compilers (x86 compilers, for example)
will reclaim the frame pointer,

◦but good luck trying to debug (debugger will
not be able to identify stack frames).

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

What is the Order of Local Variables?

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

caller’s stack frame

previous frame pointer
return address

return value

local variables

parameters

What about
the order
of local
variables?
Used only
within the
function, so
choice doesn’t
matter.

R6→

R5→
R5+1
R5+2
R5+3
R5+4

R5+0

2/12/2018

4

one local variable

no parameters

Draw Stack Frames for a Program with Several Functions

Let’s draw the stack frames for
our prime number printing example.

Here was our main function:
int main ()
{

int32_t check;
// ... code doesn’t matter to us

}

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

Stack Frame for main (During Execution of Code)

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

OS usually has data below main’s stack frame,
but from the program’s point of view,
main’s stack frame starts at the base.

base of stack

previous frame pointer
return address

return value

local var. (check)R5, R6→

Stack Frame for main (Just Before Call to is_prime)

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

Let’s
◦ collapse the linkage into one block, and
◦add space for saved values.

Here’s what we might have before calling
is_prime.

base of stack

data pushed by main
local var. (check)

linkage

R6→
R5→main’s

frame

one local variable

one parameter

Our is_prime Function for Checking Primality

main calls is_prime:

int32_t is_prime (int32_t num)
{

int32_t divisor;
// ... code doesn’t matter to us

}

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

2/12/2018

5

Frame for is_prime (Before Call to divides_evenly)

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

Let’s see the stack frame.

base of stack

data pushed by main
local var. (check)

linkage
R5→main’s

frame

is_prime’s
frame

R6→

local var. (divisor)
linkage

parameter (num)

data from is_primeR6→
R5→

two parameters

one local variable

Our divides_evenly Function for Checking Division

is_prime calls divides_evenly:

int32_t divides_evenly
(int32_t divisor, int32_t value)

{
int32_t multiple;
// ... code doesn’t matter to us

}

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

Frame for divides_evenly

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

data pushed by main

divides_evenly’s
frame

is_prime’s
frame

local var. (divisor)
linkage

parameter (num)

data from is_primeR6→
R5→

R5→ local var. (multiple)
linkage

parameter (divisor)

divides_evenly data R6→

parameter (value)Notice the
two “divisor”

locations.

