
2/5/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems & 
Programming

Control Constructs in C
(Partially a Review)

ECE 220: Computer Systems & Programming © 2016-2018 Steven S. Lumetta.  All rights reserved. slide 1

Learn Four More Kinds of C Statements

We’ll learn about statements for* …
◦ conditional decomposition: 

if and switch;
◦ iterative decomposition: 

for, while, and do/while;
◦ iteration control:

continue, and break; and
◦ function control:

return.
*Minor review: if and for covered in ECE120.

© 2018 Steven S. Lumetta.  All rights reserved. slide 2ECE 220: Computer Systems & Programming

Statements Can Introduce Conditions

Simple statements in C can introduce 
conditional execution.

Based on an 
expression, the 
computer 
executes one 
of two
statements.

© 2016-2018 Steven S. Lumetta.  All rights reserved. slide 3

then
statement

else
statement

evaluate
expression

≠ 0 
(true)

0 
(false)

ECE 220: Computer Systems & Programming

C’s if Statement Enables Conditional Execution

Conditional execution uses the if statement:
if ( <expression> ) {

/* <expression> != 0:
execute "then" block */

} else {
/* <expression> == 0:

execute "else" block */
}
<expression> can be replaced with any 

expression, and “else { … }” can be omitted.

© 2016 Steven S. Lumetta.  All rights reserved. slide 4ECE 220: Computer Systems & Programming



2/5/2018

2

Examples of the if Statement

For example,
/* Calculate inverse of number. */

if (0 != number) {

inverse = 1 / number;

} else {

printf ("Error!\n");

}

© 2016 Steven S. Lumetta.  All rights reserved. slide 5ECE 220: Computer Systems & Programming

Examples of the if Statement

Or,
/* Limit size to 42. */

if (42 < size) {

printf ("Size set to 42.\n");

size = 42;

}

© 2016 Steven S. Lumetta.  All rights reserved. slide 6ECE 220: Computer Systems & Programming

switch Specifies Code Based on Expression Values

What if we have more than two choices?
For example, an operation in a simple 

calculator: +, - , ×, or ÷ (divide).
One answer: use
◦a sequence of conditional constructs, or
◦nested conditionals.

Another answer: if choice based on values 
of an expression, use a switch statement.

© 2018 Steven S. Lumetta.  All rights reserved. slide 7ECE 220: Computer Systems & Programming

A Flow Chart with Multiple Choices

For example…

© 2018 Steven S. Lumetta.  All rights reserved. slide 8ECE 220: Computer Systems & Programming

'+'

multiplysubtractadd divide

evaluate
operator 

(as ASCII)

'-' '*'

'/'



2/5/2018

3

leave the switch

constant values

an expression

Multiple Choices Implemented with switch

In C, we write
switch (operator) {

case '+':     // add
break;

case '-':     // subtract
break;

case '*':     // multiply
break;

case '/':     // divide
break;

}

© 2018 Steven S. Lumetta.  All rights reserved. slide 9ECE 220: Computer Systems & Programming

Constant Values, Break after Each Block of Code

Switch allows any expression, 
but values must be constant.
Normally, use break at end of each case.
◦No break means keep going, such as
◦when two values require the same code.

case 1:
case 2:

// code for both 1 and 2
break;

© 2018 Steven S. Lumetta.  All rights reserved. slide 10ECE 220: Computer Systems & Programming

Pitfall: Be Sure Others Know Your Intent

Leaving out break is usually an error.
case 1:

// do this first
// code continues with next case

case 2:
// both cases execute this code!
break;

People may “fix” the code.  Always comment!

© 2018 Steven S. Lumetta.  All rights reserved. slide 11ECE 220: Computer Systems & Programming

Use default to Catch All Remaining Values

switch (<expression>) {
case <value1>:

break;
...
default:

// code for other values
break;

}
default catches any other values

(and should be the last case)

© 2018 Steven S. Lumetta.  All rights reserved. slide 12ECE 220: Computer Systems & Programming



2/5/2018

4

Simple Statements Can Also Be Iterations

Simple statements can
also describe iterative
execution.
This type of
execution repeats
a statement until
a test evaluates to
false (0).

© 2016-2018 Steven S. Lumetta.  All rights reserved. slide 13

loop
body

init
expression

evaluate
test expr.
≠ 0 

(true)

0 
(false)

update
expression

ECE 220: Computer Systems & Programming

C’s for Loop Enables Iterative Execution

The following is called a for loop:
for (<init>; <test>; <update>) {

/* loop body */
}

As shown on the previous slide, the computer:
1. Evaluates <init>.
2. Evaluates <test>, and stops if it is false (0).
3. Executes the loop body.
4. Evaluates <update> and returns to Step 2.

© 2016 Steven S. Lumetta.  All rights reserved. slide 14ECE 220: Computer Systems & Programming

Iterations are Used for Repeated Behavior

/* Print multiples of 42 from 
1 to 1000. */

int N;
for (N = 1; 1000 >= N; N = N + 1) {

if (0 == (N % 42)) {
printf ("%d\n", N);

}
}

© 2016 Steven S. Lumetta.  All rights reserved. slide 15ECE 220: Computer Systems & Programming

Let’s See How This Loop Works

/* Print 20 Fibonacci numbers. */
int A = 1; int B = 1; int C; int D;
for (D = 0; 20 > D; D = D + 1) {

printf ("%d\n", A);
C = A + B;
A = B;
B = C;

}

© 2016 Steven S. Lumetta.  All rights reserved. slide 16ECE 220: Computer Systems & Programming



2/5/2018

5

Another Iterative Construct: the while Loop

A while loop
◦only specifies a <test>
and a loop body, but is

◦otherwise equivalent to a for loop.

while (<test>) {
/* loop body */

}

© 2016-2018 Steven S. Lumetta.  All rights reserved. slide 17ECE 220: Computer Systems & Programming

Easy to Map while Loop into for Loop

while (<test>) {
/* loop body */

}

is completely equivalent to
(with empty <init> and <update>):
for ( ; <test>; ) {

/* loop body */
}

© 2016 Steven S. Lumetta.  All rights reserved. slide 18ECE 220: Computer Systems & Programming

Execution of a while Loop

How does the computer execute a while loop?
while (<test>) {

/* loop body */
}

We can simplify the rules for a for loop…
1. Evaluates <init>.
2. Evaluates <test>, and stops if it is false (0).
3. Executes the loop body.
4. Evaluates <update> and returns to Step 2.

© 2016 Steven S. Lumetta.  All rights reserved. slide 19

Skip this step.

Skip this part.
ECE 220: Computer Systems & Programming

while Loop Performs the Iterative Decomposition

The while loop is identical to 
the iterative decomposition.

while (<test>) {
/* body */

}

© 2016-2018 Steven S. Lumetta.  All rights reserved. slide 20

body

test

TRUE

FALSE

ECE 220: Computer Systems & Programming



2/5/2018

6

Use do / while to Skip the First Test

What if we want to skip the first test?

while (<test>) {
/* body */

}
do {

/* body */
} while (<test>);

© 2016-2018 Steven S. Lumetta.  All rights reserved. slide 21

body

test

TRUE

FALSE

ECE 220: Computer Systems & Programming

continue / break Apply to Innermost Iteration

C supports two statements for iteration control:
continue:
◦ current iteration is done, so
◦ skip to the update step.
break:
◦ current iterative construct is done, so
◦ stop iterating.

These apply to the innermost loop (or switch).

© 2018 Steven S. Lumetta.  All rights reserved. slide 22ECE 220: Computer Systems & Programming

Where Do continue / break Go …

© 2016-2018 Steven S. Lumetta.  All rights reserved. slide 23ECE 220: Computer Systems & Programming

body2

init2

≠ 0 
(true)

0 
(false)

update2

extra1

body1

body1

init1

≠ 0 
(true)

0 
(false)

update1

switch

extra2

body2

… from 
switch?

continue

break

Where Do continue / break Go …

© 2016-2018 Steven S. Lumetta.  All rights reserved. slide 24ECE 220: Computer Systems & Programming

body2

init2

≠ 0 
(true)

0 
(false)

update2

extra1

body1

body1

init1

≠ 0 
(true)

0 
(false)

update1

switch

extra2

body2

… from 
extra2?

continue

break



2/5/2018

7

Where Do continue / break Go …

© 2016-2018 Steven S. Lumetta.  All rights reserved. slide 25ECE 220: Computer Systems & Programming

body2

init2

≠ 0 
(true)

0 
(false)

update2

extra1

body1

body1

init1

≠ 0 
(true)

0 
(false)

update1

switch

extra2

body2

… from 
extra1?

continue

break

continue Goes to Test in while and do / while

Remember that 
◦while and do / while are like for loops 
◦with no initialization nor update 
expressions, so

◦continue goes to the test.

© 2018 Steven S. Lumetta.  All rights reserved. slide 26ECE 220: Computer Systems & Programming

return Ends the Current Function (with a Return Value)

The return statement
◦provides a value (an expression) to be 
returned from the current function, and

◦ terminates function IMMEDIATELY.
In other words, in LC-3,
◦ calculate the expression’s value
◦ copy the result into the return value slot
◦ tear down the stack frame
◦RET

© 2018 Steven S. Lumetta.  All rights reserved. slide 27ECE 220: Computer Systems & Programming


