
2/6/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

C to LC-3 Example:
Finding an Absolute Value

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Let’s Act Like Compilers!

Let’s have some fun!

Let’s pretend to be a C compiler!

No, really, I expect to hear cheers.

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Task: Convert a Number to Its Absolute Value

Here’s our task:
◦ let the user type in a number,
◦convert the number to its absolute value,
◦ then print the result in hexadecimal.

We’ll write this function:*
int32_t find_abs (int32_t num);

*We’ll discuss function declarations/signatures
in more detail later.

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

int32_t
as input

name of
subroutine

returns an
int32_t

FALSETRUE

Decompose Finding Absolute Value

Which decomposition should we use?
What is the
test?

© 2018 Steven S. Lumetta. All rights reserved. slide 4

find |num|
abs_value =

num
abs_value =

-num

num >= 0

ECE 220: Computer Systems & Programming

2/6/2018

2

our function
signature

conditional construct
using conditional operator

A C Function to Find Absolute Value

Here’s the function.
int32_t find_abs (int32_t num)
{

int32_t abs_value;
abs_value = (0 <= num ?

num : -num);
return abs_value;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

file scope
variable

We will translate this function call first.

Using find_abs Function in C

Also in the program translate.c
(see web page for full version):
static int32_t the_number;

// ... and inside main ...

the_number = find_abs (the_number);

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

data for main
data for foo

data for
current function

. .
 .

First, We Must Learn About Stack Frames in LC-3

But in order to translate,
we need to know more
about LC-3 stack frames.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

system space

system space

code

stack

global data
heap

(dynamically
allocated)

R4→

R6→

R5→

LC-3 Stack Frames Contain Five Elements

Remember what’s in a stack frame?
This is the order on the stack…

Local variables
Address of caller’s stack frame
Return address (R7 in LC-3)
Outputs (return value)
Inputs (parameters, arguments)

Why are parameters on the bottom?

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

these form
the linkage

2/6/2018

3

Stack Frame Creation Shared by Caller and Callee

Who chooses parameter values?
(Caller or callee?)

Caller pushes the parameters
onto the stack.

For example, main pushes
the input to find_abs.

Callee creates the remainder
of the stack frame.

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

When JSR Returns, Return Value is on Top of Stack

Why is the return value next on the stack?

Local variables
Address of caller’s stack frame
Return address (R7 in LC-3)
Outputs (return value)
Inputs (parameters, arguments)
Return value remains on stack on return.

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

these form
the linkage

Local Variables and Parameters Accessed Using R5

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

caller’s stack frame

previous frame pointer
return address

return value

local variables

parameters

R6 points to
top of stack.
R5 points to
bottom of
local variables.
R5+0, -1, … are
local variables.
R5+4, +5, … are
parameters.

R6→

R5→
R5+1
R5+2
R5+3
R5+4

R5+0

Compilers Use Symbol Tables to Locate Variables

How does a compiler
generate instructions?

First, it builds a symbol table (like an
assembler’s, but with more information).
Here’s an example for translate.c:

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

scope identifier type from offset …
translate.c the_number int32_t R4 0 …
find_abs abs_value int32_t R5 0 …
find_abs num int32_t R5 4 …

2/6/2018

4

The Statement in Main Begins with a Function Call

Now we’re ready to translate the statement:
the_number = find_abs (the_number);

Remember that for an assignment, the
compiler generates instructions to...

1. evaluate the expression on the right, then
2. store the result into the

address on the left.
So first, we must call the function.

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

Calling a Function Consists of Four Steps

Calling a function consists of four steps:
1. evaluate and push the parameters,
2. call the function (with JSR),
3. read the return value

from the top of the stack, and
4. pop off the return value

and the parameters.

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

Evaluate Expressions Used for Parameter Values

Step 1: Evaluate and push parameters.
the_number = find_abs (the_number);

The function is called with one parameter.
Where is it?

Let’s look it up in the symbol table!

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

scope identifier type from offset …
translate.c the_number int32_t R4 0 …
find_abs abs_value int32_t R5 0 …
find_abs num int32_t R5 4 …

Read the Variable the_number into R0

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

We’re finally ready
to write code!

First, read the_number
into R0.

scope identifier type from offset …
translate.c the_number int32_t R4 0 …
find_abs abs_value int32_t R5 0 …
find_abs num int32_t R5 4 …

LDR R0,R4,#0

2/6/2018

5

Push R0 (Parameter Value) onto the Stack

LDR R0,R4,#0

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

Next, push R0
onto the stack.

Remember the two
instructions used to

push?

ADD R6,R6,#-1
STR R0,R6,#0

Call the FIND_ABS Function

LDR R0,R4,#0
ADD R6,R6,#-1
STR R0,R6,#0

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

Step 2: Call the
function.

JSR FIND_ABS

Is there an LC-3
instruction for that?

Read the Return Value from the Top of the Stack

LDR R0,R4,#0
ADD R6,R6,#-1
STR R0,R6,#0
JSR FIND_ABS

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

Step 3: Read the
return value.

LDR R0,R6,#0

Is there an LC-3
instruction for that?

Remember that
after JSR, the return
value is on top of the

stack.

Pop Return Value and Parameter(s) from Stack

LDR R0,R4,#0
ADD R6,R6,#-1
STR R0,R6,#0
JSR FIND_ABS
LDR R0,R6,#0

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

Step 4: Pop return
value and
parameter.

ADD R6,R6,#2 Is there an LC-3
instruction for that?

That’s it for the
function call.

Now what?

2/6/2018

6

Write Return Value Back into the_number

the_number = find_abs (the_number);

R0 now holds the value of the right side.
So we need to store into the_number.

Where is the_number again?
Let’s look it up in the symbol table!

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

scope identifier type from offset …
translate.c the_number int32_t R4 0 …
find_abs abs_value int32_t R5 0 …
find_abs num int32_t R5 4 …

Store R0 into the_number

LDR R0,R4,#0
ADD R6,R6,#-1
STR R0,R6,#0
JSR FIND_ABS
LDR R0,R6,#0
ADD R6,R6,#2

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

Write R0 into
the_number.

scope identifier type from offset …
translate.c the_number int32_t R4 0 …

STR R0,R4,#0

Is there an LC-3
instruction for that?

Reference Version of Function Call and Assignment

LDR R0,R4,#0
ADD R6,R6,#-1
STR R0,R6,#0
JSR FIND_ABS
LDR R0,R6,#0
ADD R6,R6,#2
STR R0,R4,#0

the_number = find_abs (the_number);

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

That’s it for the
function call!

You can find both
the C code and the
LC-3 code on the

web page.

Code for a Function Consists of Four Parts

Now we’re ready to translate find_abs.

A function’s code consists of four parts:
1. set up the stack frame,
2. execute the statements,
3. tear down the stack frame (leaving the

return address on the stack with LC-3),
4. and return (RET).

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

2/6/2018

7

Stack Appearance on Entry to find_abs

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

When find_abs starts execution,
the stack appears as shown below…
R6 points to the parameters, which are
already on the stack (pushed by the caller).
Below parameters is the caller’s stack frame,
and R5 points into it (somewhere).

main’s stack frame

parameters (num)R6→

R5→

Stack Frame for find_abs (During Execution of Code)

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

The stack frame should look like this…
Setting up the stack frame means making
this change.

main’s stack frame

parameters (num)

previous frame pointer
return address

return value

local var. (abs_value)R5, R6→

R6→

R5→

Make Space for the Remainder of the Stack Frame

FIND_ABS

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

First, make space
on the stack.

ADD R6,R6,#-4

Is there an LC-3
instruction for that?

How many locations
do we need?

Save Caller’s Frame Pointer into Stack Frame

FIND_ABS
ADD R6,R6,#-4

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

Next, save the
caller’s frame
pointer (R5).STR R5,R6,#1

Is there an LC-3
instruction for that?

Where does it go?

Note: offset depends
on space for local

variables.

2/6/2018

8

Set Frame Pointer for find_abs

FIND_ABS
ADD R6,R6,#-4
STR R5,R6,#1

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

Next, set R5 to
point to the lowest

local variable.
ADD R5,R6,#0

Is there an LC-3
instruction for that?

How much
do we add?

Note: amount added
depends on space
for local variables.

Save Return Address into the Stack Frame

FIND_ABS
ADD R6,R6,#-4
STR R5,R6,#1
ADD R5,R6,#0

© 2018 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

Finally,
save R7 into the

stack frame.

STR R7,R5,#2 Is there an LC-3
instruction for that?

What are the base
register and offset?

Note: always the
same offset from R5.

Stack Frame for find_abs (During Execution of Code)

© 2018 Steven S. Lumetta. All rights reserved. slide 31ECE 220: Computer Systems & Programming

Now we can write code for the C statements.
Note that offsets match the symbol table.

main’s stack frame

parameters (num)

previous frame pointer
return address

return value

local var. (abs_value)R5, R6→
R5+1
R5+2
R5+3
R5+4

R5+0

Implement the First C Statement

Here’s the first statement.
abs_value = (0 <= num ? num : -num);

We start with the test.
Where is num?

Look in the symbol table!

© 2018 Steven S. Lumetta. All rights reserved. slide 32ECE 220: Computer Systems & Programming

scope identifier type from offset …
translate.c the_number int32_t R4 0 …
find_abs abs_value int32_t R5 0 …
find_abs num int32_t R5 4 …

2/6/2018

9

Load Variable num into R0

© 2018 Steven S. Lumetta. All rights reserved. slide 33ECE 220: Computer Systems & Programming

Load num into R0.LDR R0,R5,#4

Is there an LC-3
instruction for that?

scope identifier type from offset …
translate.c the_number int32_t R4 0 …
find_abs abs_value int32_t R5 0 …
find_abs num int32_t R5 4 …

Check the Sign of Parameter num

LDR R0,R5,#4

© 2018 Steven S. Lumetta. All rights reserved. slide 34ECE 220: Computer Systems & Programming

Branch on false
(num < 0)BRn ELSE_COND

Is there an LC-3
instruction for that?

What are the
condition codes?

ELSE_COND

Test is True, So Expression Value is num

abs_value = (0 <= num ? num : -num);

The test is true: expression’s value is num.
Where is num?

Look in the symbol table!

© 2018 Steven S. Lumetta. All rights reserved. slide 35ECE 220: Computer Systems & Programming

scope identifier type from offset …
translate.c the_number int32_t R4 0 …
find_abs abs_value int32_t R5 0 …
find_abs num int32_t R5 4 …

Load Variable num into R0

LDR R0,R5,#4
BRn ELSE_COND

ELSE_COND

© 2018 Steven S. Lumetta. All rights reserved. slide 36ECE 220: Computer Systems & Programming

Load num into R0.

LDR R0,R5,#4

Is there an LC-3
instruction for that?

scope identifier type from offset …
translate.c the_number int32_t R4 0 …
find_abs abs_value int32_t R5 0 …
find_abs num int32_t R5 4 …

2/6/2018

10

Conditional Operator is Complete: Branch to Assignment

LDR R0,R5,#4
BRn ELSE_COND
LDR R0,R5,#4

ELSE_COND

© 2018 Steven S. Lumetta. All rights reserved. slide 37ECE 220: Computer Systems & Programming

Branch to
assignment

(to abs_value).

Is there an LC-3
instruction for that?

BRnzp DONE_COND

What are the
condition codes?

DONE_COND

Test is False, So Expression Value is -num

Now for the ‘else’ condition...
abs_value = (0 <= num ? num : -num);

The test is false: expression’s value is -num.
Where is num?

Look in the symbol table!

© 2018 Steven S. Lumetta. All rights reserved. slide 38ECE 220: Computer Systems & Programming

scope identifier type from offset …
translate.c the_number int32_t R4 0 …
find_abs abs_value int32_t R5 0 …
find_abs num int32_t R5 4 …

Load Variable num into R0

LDR R0,R5,#4
BRn ELSE_COND
LDR R0,R5,#4
BRnzp DONE_COND
ELSE_COND

DONE_COND

© 2018 Steven S. Lumetta. All rights reserved. slide 39ECE 220: Computer Systems & Programming

Just be glad that
you’re a human.

Load num into R0.

Ok, ok!
I won’t ask you!

LDR R0,R5,#4

Computers are dumb.

Negate R0

LDR R0,R5,#4
BRn ELSE_COND
LDR R0,R5,#4
BRnzp DONE_COND
ELSE_COND
LDR R0,R5,#4

DONE_COND

© 2018 Steven S. Lumetta. All rights reserved. slide 40ECE 220: Computer Systems & Programming

Negate R0.

NOT R0,R0

Is there an LC-3
instruction for that?

No. But we can
use two.

ADD R0,R0,#1

2/6/2018

11

Finish the Assignment Operator

The right side’s value is now in R0.
abs_value = (0 <= num ? num : -num);

Let’s store it into abs_value.
Where is abs_value?

Look in the symbol table!

© 2018 Steven S. Lumetta. All rights reserved. slide 41ECE 220: Computer Systems & Programming

scope identifier type from offset …
translate.c the_number int32_t R4 0 …
find_abs abs_value int32_t R5 0 …
find_abs num int32_t R5 4 …

Store R0 into Variable abs_value

LDR R0,R5,#4
BRn ELSE_COND
LDR R0,R5,#4
BRnzp DONE_COND
ELSE_COND
LDR R0,R5,#4
NOT R0,R0
ADD R0,R0,#1
DONE_COND

© 2018 Steven S. Lumetta. All rights reserved. slide 42ECE 220: Computer Systems & Programming

STR R0,R5,#0

Is there an LC-3
instruction for that?

Store R0 into
abs_value.

identifier type from offset
the_number int32_t R4 0
abs_value int32_t R5 0

num int32_t R5 4

We Have Translated the First C Statement!

LDR R0,R5,#4
BRn ELSE_COND
LDR R0,R5,#4
BRnzp DONE_COND
ELSE_COND
LDR R0,R5,#4
NOT R0,R0
ADD R0,R0,#1
DONE_COND
STR R0,R5,#0

© 2018 Steven S. Lumetta. All rights reserved. slide 43ECE 220: Computer Systems & Programming

The statement
is complete!

abs_value =
(0 <= num ?
num : -num);

Implement the Second (and Last) C Statement

Here’s the second statement.
return abs_value;

(Copy abs_value to return value, then RET.)
Where is abs_value?

Look in the symbol table!

© 2018 Steven S. Lumetta. All rights reserved. slide 44ECE 220: Computer Systems & Programming

scope identifier type from offset …
translate.c the_number int32_t R4 0 …
find_abs abs_value int32_t R5 0 …
find_abs num int32_t R5 4 …

2/6/2018

12

Load Variable abs_value into R0

© 2018 Steven S. Lumetta. All rights reserved. slide 45ECE 220: Computer Systems & Programming

Load abs_value
into R0.

LDR R0,R5,#0

Is there an LC-3
instruction for that?

scope identifier type from offset …
translate.c the_number int32_t R4 0 …
find_abs abs_value int32_t R5 0 …
find_abs num int32_t R5 4 …

Where is the Return Value Stored?

© 2018 Steven S. Lumetta. All rights reserved. slide 46ECE 220: Computer Systems & Programming

Where does the return value go?
Look in the stack frame!

R5 + 3

main’s stack frame

parameters (num)

previous frame pointer
return address

return value

local var. (abs_value)R5, R6→
R5+1
R5+2
R5+3
R5+4

R5+0

Store R0 in Return Value Slot of Stack Frame

LDR R0,R5,#0

© 2018 Steven S. Lumetta. All rights reserved. slide 47ECE 220: Computer Systems & Programming

Store R0 into
return value slot.STR R0,R5,#3

Is there an LC-3
instruction for that?

We Have Translated the Code for find_abs!

LDR R0,R5,#0
STR R0,R5,#3

© 2018 Steven S. Lumetta. All rights reserved. slide 48ECE 220: Computer Systems & Programming

Store R0 into
return value slot.
The statement
is complete!

return abs_value;

2/6/2018

13

Time to Tear Down the Stack Frame

Time for Step 3: tear down the stack frame.

A function’s code consists of four parts:
1. set up the stack frame,
2. execute the statements,
3. tear down the stack frame (leaving the

return address on the stack with LC-3),
4. and return (RET).

© 2018 Steven S. Lumetta. All rights reserved. slide 49ECE 220: Computer Systems & Programming

Stack Appearance Before Tearing Down Stack Frame

© 2018 Steven S. Lumetta. All rights reserved. slide 50ECE 220: Computer Systems & Programming

Here’s the stack frame during execution
of the statements in find_abs.

main’s stack frame

parameters (num)

previous frame pointer
return address

return value

local var. (abs_value)R5, R6→
R5+1
R5+2
R5+3
R5+4

R5+0

Stack Appearance After Tearing Down Stack Frame

© 2018 Steven S. Lumetta. All rights reserved. slide 51ECE 220: Computer Systems & Programming

We need to pop down to the return value
and reset R5 to main’s frame pointer.

main’s stack frame

parameters (num)
return value

previous frame pointer
return address

local var. (abs_value)R5, R6→

R6→

R5→

Restore Return Address from the Stack Frame

© 2018 Steven S. Lumetta. All rights reserved. slide 52ECE 220: Computer Systems & Programming

First, restore
R7 from the
stack frame.

LDR R7,R5,#2

Is there an LC-3
instruction for that?

What are the base
register and offset?

Note: always the
same offset from R5.

2/6/2018

14

Restore Caller’s Frame Pointer from the Stack Frame

LDR R7,R5,#2

© 2018 Steven S. Lumetta. All rights reserved. slide 53ECE 220: Computer Systems & Programming

Next, restore
caller’s frame
pointer (R5).

LDR R5,R5,#1

Is there an LC-3
instruction for that?

What are the base
register and offset?

Note: always the
same offset from R5.

Pop Down to Return Value

LDR R7,R5,#2
LDR R5,R5,#1

© 2018 Steven S. Lumetta. All rights reserved. slide 54ECE 220: Computer Systems & Programming

Finally, pop the
stack down to the

return value.ADD R6,R6,#3

Is there an LC-3
instruction for that?

How much
do we add?

Note: amount added
depends on space
for local variables.

One More Step… Return!

Time for Step 4: return to caller.

A function’s code consists of four parts:
1. set up the stack frame,
2. execute the statements,
3. tear down the stack frame (leaving the

return value on the stack with LC-3),
4. and return (RET).

© 2018 Steven S. Lumetta. All rights reserved. slide 55ECE 220: Computer Systems & Programming

We’re Done! It’s Time to Return to the Caller

LDR R7,R5,#2
LDR R5,R5,#1
ADD R6,R6,#3

© 2018 Steven S. Lumetta. All rights reserved. slide 56ECE 220: Computer Systems & Programming

Return to
the caller.

RET
Is there an LC-3

instruction for that?

2/6/2018

15

Code is Available on the Web Page

Remember that this code is
available on the web page:
◦translate.c – the C version
◦translate.asm – the LC-3 version

I took some liberties in the translation,
but the call and the function
find_abs are as shown here.

See comments in the code for details.

© 2018 Steven S. Lumetta. All rights reserved. slide 57ECE 220: Computer Systems & Programming

