
2/5/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Scope, Storage Class, Memory Map,
and Register Conventions

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Data Unlikely to Fit in Registers

In assembly code,
◦ programmer identifies data needed and
◦ decides where to put each datum.

Even programs of moderate size are likely to
◦ have more data
◦ than registers in the ISA.

In histogram example, we had
◦ data used to initialize histogram and
◦ data used for counting.
◦ Could add data for printing, too.

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Most Data Not Needed Everywhere in a Program

A question for you:
Do all data need to be available

in all parts of the program?
No!

While counting characters for the histogram,
we did not need
◦ initialization data, nor
◦printing data (was not even defined).

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

A Datum’s Scope Determines Where It Can be Used

In assembly code,
◦ the scope of a datum is
◦ the part of the program
◦ in which the datum is accessible.

Usually (in assembly code),
◦ data are scoped within a subroutine
◦ or within one “part” of the program

(initialization, counting, printing).
Outside of a datum’s scope
◦ datum does not logically exist
◦ (bits may still be in location chosen).

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

2/5/2018

2

C Variables Can Be Global (Whole Program Scope)

But now we’re going to write C!
In C,
◦we use strings as datum names, so
◦we could use a single scope.
◦ In other words, all data are available
in all parts of the code.

Good idea?
Absolutely not!

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Picking Lots of Unique Names is Difficult

Why not?
Managing global names is a nightmare.

Imagine a program
◦ of 1,000,000 lines,
◦ with 20 programmers.

Can you pick names that are unique?
Did you remember that the program includes
library code? What about the names there?

So … tiny gain, lots of pain.

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Use File Scope in C, Not Global Scope

Avoid defining global variables.
C allows programmers to limit scope to
◦ a file,
◦ a function, or
◦ a compound statement.

For file scope,
◦ put the variable outside of all functions, and
◦ Write “static” in front of the declaration:
static int my_var; // usable in this file

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Local Variables Have Scope within a Function/Block

For function/compound statement scope,
declare the variable between braces:
{ // sometimes called a "block"

int i, j;

// i and j can be accessed here

}

Such variables are called local variables.

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

2/5/2018

3

Local Variables Do Not Exist Outside of their Blocks

Usually, local variables are
◦created and destroyed
◦at the start and end
◦of the enclosing function.
{

int i, j;

// i and j can be accessed here

}

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

space allocated
before execution

space reclaimed
after execution

Variables Can be Used without Naming Them

A variable’s scope
◦defines the part of the program
◦ in which the variable can be used by
name.

Using a variable does not require its name.
◦You have already seen an example:
◦ If variable exists,
◦ its address can be used
◦ to read or write the variable.

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

scanf

C Provides Three Storage Classes for Variables

A variable’s storage class defines
◦when the variable
is created and destroyed

◦and where in memory
the variable is stored.

There are three storage classes in C:
◦ static: exists for the whole program
◦automatic: exists for a single block of code
(such as a function)

◦dynamic: created and destroyed on demand

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

A Memory Map Illustrates Use of Memory

But where are the
storage classes stored?
How do high-level
languages (such as C)
make use of LC-3
memory and registers?
Let’s take a look, starting
with a memory map.

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

2/5/2018

4

Low Addresses are Reserved for the Operating System

Low addresses are usually
reserved for the OS.
With LC-3, we have
◦ trap vector table at
x0000 to x00FF,

◦ interrupt/exception table at
x0100 to x01FF, and

◦OS code (trap subroutines).

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

system space

High Addresses Also Reserved for the Operating System

High addresses are also
usually reserved for the OS.

With LC-3, we have
memory-mapped I/O at
xFE00 to xFFFF.

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

system space

system space

Code and Data are Mapped After the Low System Area

User code is usually mapped
into memory after the system
space.
With LC-3, code starts at
x3000 by convention.
And program data is
mapped into memory
after the code.

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

system space

system space

code
global data

The Stack is Mapped Above the High System Area

The stack is mapped
just above the high system
area.

With LC-3, the base can
be xFE00, allowing the
stack to grow into unused
memory.

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

system space

system space

code
global data

stack

2/5/2018

5

The Heap is Mapped After the Program’s Data

The heap is mapped
just after the global data
area.

The starting location
depends on the size of
the program (and data).
The heap grows downward
into unused memory.

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

system space

system space

code
global data

stack

heap
(dynamically

allocated)

Where are the Storage Classes in Memory?

Static storage class is
in global data.
R4 points to the top
of this region with LC-3.
Dynamic storage class is in
the heap (program must keep
track of variable addresses).
Automatic storage class
is in the stack.

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

system space

system space

code

stack

global data
heap

(dynamically
allocated)

R4→

data for main
data for foo

data for
current function

. .
 .

The Stack Holds One Stack Frame per Function

Let’s look more closely
at the stack.
R6 points to the top.

Each function
has a stack
frame. R5 is a
frame pointer.

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

system space

system space

code

stack

global data
heap

(dynamically
allocated)

R4→

R6→

R5→

Stack Frame for main is Pushed First

When a C program starts, the function main
is executed (main’s frame pushed on stack).

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

stack

data for mainR6→
R5→

2/5/2018

6

When main Calls foo, foo’s Stack Frame is Pushed

When a C program starts, the function main
is executed (main’s frame pushed on stack).
main may call another

function, such as foo.

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

data for foo

stack

data for mainR6→
R5→

R6→
R5→

Each Function Call Pushes Another Stack Frame

When a C program starts, the function main
is executed (main’s frame pushed on stack).
main may call another

function, such as foo.
… which calls another …
R5 always points to the
current function’s stack
frame.
(How, exactly? Later.)

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

data for foo

data for
current function

. .
 .

R6→
stack

R5→

data for main

R6→
R5→

A Function’s Stack Frame is Popped When It Returns

When a function finishes executing, its
stack frame is removed from the stack.

Here, execution has
returned to the function
foo called from main.

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

data for foo

data for
current function

. .
 .

R6→
stack

R5→

data for main

R6→
R5→

Example: One Stack Frame per Function Called

Let’s do an example.

int main ()
{

int32_t a = 42;
printf ("%d", a);
return 0;

}

main’s stack frame is first.

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

stack

data for mainR6→
R5→

2/5/2018

7

Example: main calls printf

main calls printf.

int main ()
{

int32_t a = 42;
printf ("%d", a);
return 0;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

data for printf

stack

data for mainR6→
R5→

R6→
R5→

Example: printf calls print_number

printf calls print_number.

int main ()
{

int32_t a = 42;
printf ("%d", a);
return 0;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

data for printf

stack

data for main

R6→
R5→

R6→
R5→ data for

print_number

Example: print_number calls print_char

print_number calls print_char.

int main ()
{

int32_t a = 42;
printf ("%d", a);
return 0;

}

Eventually, all functions finish.

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

data for printf

stack

data for main

R6→
R5→
R6→
R5→ data for

print_number

data for
print_char

Stack and Heap Can Not Be Allowed to Collide

What happens if the
heap and the stack
collide?
As discussed earlier,
◦ in LC-3/embedded ISA/
inside OS, silent data
corruption.

◦ in programs with most
ISAs, hardware detects
and crashes the program.

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

system space

system space

code

stack

global data
heap

(dynamically
allocated)

R4→

R5→
R6→

2/5/2018

8

What is the LC-3 Calling Convention for R0 through R3?

What about R0 through R3?
Remember: compilers must
◦ systematically generate assembly from C
◦ in a way that matches other compilers’ code.

Are R0, R1, R2, and R3
◦ caller-saved, or
◦ callee-saved?

What is the calling convention?

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

Assume that R0 through R3 are Caller-Saved

I’m not sure.
I couldn’t find it in the book.

There was once an LC-3 C compiler.
I think R0-R3 were callee-saved.

However, for our class, we will assume:

R0-R3 are caller-saved.

© 2018 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

Summary of Static Storage Class

Static variables
◦part of program’s image on disk
◦ (so can be initialized with bits: 0 by default),
◦ stored in global data area, and
◦persist for lifetime of program.

© 2018 Steven S. Lumetta. All rights reserved. slide 31ECE 220: Computer Systems & Programming

Summary of Automatic Storage Class

Automatic variables
◦ created as part of a function’s stack frame,
◦ start as bits
◦ (can optionally by initialized by code), and
◦destroyed when stack frame is popped
(end of function execution).

© 2018 Steven S. Lumetta. All rights reserved. slide 32ECE 220: Computer Systems & Programming

2/5/2018

9

Summary of Dynamic Storage Class

Dynamic variables (How to use? Later.)
◦ created and destroyed on demand,
◦have no names—must be tracked by
program, and

◦ stored in heap.

© 2018 Steven S. Lumetta. All rights reserved. slide 33ECE 220: Computer Systems & Programming

How C Determines Scope and Storage Class

© 2018 Steven S. Lumetta. All rights reserved. slide 34ECE 220: Computer Systems & Programming

unnamed

function or
block
scope file scope

global
scope

static
(global data) constants use 'static'

inside block

use 'static'
outside of all

functions

not 'static'
outside of all

functions
automatic

(stack)
temporaries,

spills
not 'static'

inside block
dynamic
(heap)

discussed
later

Note that the 'static' qualifier
• changes the scope of variables outside of all functions, but
• changes the storage class of variables inside functions.

