
2/5/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Expressions and Operators in C
(Partially a Review)

ECE 220: Computer Systems & Programming © 2016-2018 Steven S. Lumetta. All rights reserved. slide 1

Expressions are Used to Perform Calculations

An expression is a calculation consisting of
variables, operators, and function calls.
For example,

A + 42

A / B

Deposits – Withdrawals

scanf ("%f", &flt)

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Our Class Focuses on Four Types of Operator in C

The C language supports many operators.
In ECE120, you learned about four types:
◦arithmetic operators
◦bitwise Boolean operators
◦ relational / comparison operators
◦ the assignment operator

Let’s review those first.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

Five Arithmetic Operators on Numeric Types

Arithmetic operators in C include
◦addition: +
◦ subtraction: –
◦multiplication: *
◦division: /
◦modulus: % (integers only)

The C library includes many other functions,
such as exponentiation, logarithms, square
roots, and so forth.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

2/5/2018

2

Arithmetic Mostly Does What You Expect

Declare: int A = 120; int B = 42;
Then…

A + B evaluates to
A – B evaluates to
A * B evaluates to
A % B evaluates to
A / B evaluates to…

What’s going on with division?

© 2016 Steven S. Lumetta. All rights reserved. slide 5

162
78
5040
36
2

ECE 220: Computer Systems & Programming

A Few Pitfalls of C Arithmetic

No checks for overflow, so be careful.
◦unsigned int A = 0 – 1;
◦A is a large number!

Integer division
◦Trying to divide by 0 ends the program
(floating-point produces infinity or NaN).

◦ Integer division evaluates to an integer,
so (100 / 8) * 8 is not 100.

© 2016 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

C Behavior Sometimes Depends on the Processor

Integer division is rounded to an integer.
Rounding depends on the processor.
Most modern processors round towards 0, so…

11 / 3 evaluates to 3
-11 / 3 evaluates to -3

Modulus A % B is defined such that
(A / B) * B + (A % B) is equal to A

So (-11 % 3) evaluates to -2.
Modulus is not always positive.

© 2016 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Six Bitwise Operators on Integer Types

Bitwise operators in C include
◦AND: &
◦OR: |
◦NOT: ~
◦XOR: ^
◦ left shift: <<
◦ right shift: >>

In some languages, ^ means exponentation,
but not in the C language.

© 2016 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

2/5/2018

3

Bitwise Operators Treat Numbers as Bits

Declare: int A = 120; int B = 42;

/* A = 0x00000078, B = 0x0000002A

using C's notation for hexadecimal. */

Then…
A & B evaluates to

0000 0000 0000 0000 0000 0000 0111 1000

AND 0000 0000 0000 0000 0000 0000 0010 1010

0000 0000 0000 0000 0000 0000 0010 1000

© 2016-2017 Steven S. Lumetta. All rights reserved. slide 9

40 0x00000028

Apply AND to
pairs of bits.

ECE 220: Computer Systems & Programming

Bitwise Operators Treat Numbers as Bits

Declare: int A = 120; int B = 42;

/* A = 0x00000078, B = 0x0000002A

using C's notation for hexadecimal. */

Then…
A & B evaluates to
A | B evaluates to
~A evaluates to

A ^ B evaluates to

© 2016-2017 Steven S. Lumetta. All rights reserved. slide 10

40 0x00000028

122 0x0000007A
-121 0xFFFFFF87

82 0x00000052

ECE 220: Computer Systems & Programming

Left Shift by N Multiplies by 2N

Shifting left by N bits adds N 0s on right.
◦ It’s like multiplying by 2N.
◦N bits lost on left! (Shifts can overflow.)

Declare: int A = 120;/* 0x00000078 */

unsigned int B = 0xFFFFFF00;

Then…
A << 2 evaluates to
B << 4 evaluates to

© 2016 Steven S. Lumetta. All rights reserved. slide 11

480 0x000001E0
(<B!) 0xFFFFF000

ECE 220: Computer Systems & Programming

Right Shift by N Divides by 2N

A question for you: What bits appear on the
left when shifting right?
Declare: int A = 120;/* 0x00000078 */

A >> 2 evaluates to
What about 0xFFFFFF00 >> 4?
Is 0xFFFFFF00 equal to

-256 (/16 = -16, so insert 1s)? or equal to
4,294,967,040 (/16 = 268,435,440, insert 0s)?

© 2016 Steven S. Lumetta. All rights reserved. slide 12

30 0x0000001E

ECE 220: Computer Systems & Programming

2/5/2018

4

Right Shifts Depend on the Data Type

A C compiler uses the type of the variable to
decide which type of right shift to produce
For an int
◦ 2’s complement representation
◦ produces arithmetic right shift
◦ (copies the sign bit)

For an unsigned int
◦ unsigned representation
◦ produces logical right shift
◦ (inserts 0s on left)

© 2016 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

Right Shift by N Divides by 2N

Declare: int A = -120;/* 0xFFFFFF88 */
unsigned int B = 0xFFFFFF00;

Then…
A >> 2 evaluates to
A >> 10 evaluates to
B >> 2 evaluates to
B >> 10 evaluates to

Notice that right shifts round down.

© 2016 Steven S. Lumetta. All rights reserved. slide 14

-30 0xFFFFFFE2
-1 0xFFFFFFFF

0x3FFFFFC0

0x003FFFFF

ECE 220: Computer Systems & Programming

Six Relational Operators

Relational operators in C include
◦ less than: <
◦ less or equal to: <=
◦ equal: == (TWO equal signs)
◦not equal: !=
◦ greater or equal to: >=
◦ greater than: >
C operators cannot include spaces, nor can
they be reordered (so no "< =" nor "=<").

© 2016 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

Relational Operators Evaluate to 0 or 1

In C,
◦0 is false, and
◦all other values are true.

Relational operators always
◦evaluate to 0 when false, and
◦evaluate to 1 when true.

© 2016 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

2/5/2018

5

Relational Operators Also Depend on Data Type

Declare: int A = -120;/* 0xFFFFFF88 */
int B = 256;/* 0x00000100 */

Is A < B?
◦Yes, -120 < 256.
◦But if the same bit patterns were
interpreted using the unsigned
representation,

0xFFFFFF88 > 0x00000100

As with shifts, a C compiler uses the data
type to perform the correct comparison.

© 2016 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

The Assignment Operator Can Change a Variable’s Value

The C language uses = as the assignment
operator. For example,

A = 42

changes the bits of variable A
to represent the number 42.
One can write any expression on the
right-hand side of assignment. So

A = A + 1

increments the value of variable A by 1.

© 2016 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

Assignment Calculates an Expression, then Writes Bits

The code for an assignment
1. calculates the expression, then
2. writes the result to the address

for the left-hand side.
For example, given

A = B + C

A compiler produces
something akin to this code.

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

LD R0,B
LD R1,C
ADD R0,R0,R1
ST R0,A

Assignments Write to Memory Addresses

A C compiler can not solve equations.
For example,

A + B = 42

results in a compilation error (the compiler
cannot produce instructions for you).
The left-hand side of an assignment
must have an address.
An expression with an address is called
an l-value. Variables are l-values.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

2/5/2018

6

Assignments Evaluate to their Right-Hand Side

Note: an assignment is an expression.
Assignment evaluates to
the value of the right-hand side.
So, for example, one can write:
A = B = 0; // same as A = (B = 0);

The expression “B = 0” evaluates to 0,
so A is also assigned the value 0.

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

Pitfall of the Assignment Operator

Programmers sometimes
◦write “=” (assignment)
◦ instead of “==” (comparison for equality).

For example, to compare variable A to 42,
◦ one might want to write “A == 42”
◦but instead write “A = 42” by accident.

A C compiler can sometimes warn you
(in which case, fix the mistake!).

© 2016 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

Good Programming Habits Reduce Bugs

To avoid these mistakes, get in the habit of
writing comparisons with the variable on the
right.
For example, instead of “A == 42”, write

42 == A

If you make a mistake and write “42 = A”,
◦ the compiler will always tell you,
◦and you can fix the mistake.

© 2016 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

Operator Precedence in C is Sometimes Obvious

A task for you:
Evaluate the C expression: 1 + 2 * 3

Did you get 42?
Why not 112? (10 + 4) × 8
Multiplication comes before addition
◦ in elementary school
◦and in C!

The order of operations is
called operator precedence.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 24

10 + 4 * 8

ECE 220: Computer Systems & Programming

2/5/2018

7

Never Look Up Precedence Rules!

Another task for you:
Evaluate the C expression: 10 / 2 / 3

Did you get 1.67?
Is it a friend’s birthday?
Perhaps it causes a divide-by-0 error?
Or maybe it’s … 1? (10 / 2) / 3, as int
If the order is not obvious,
◦ Do NOT look it up.
◦ Add parentheses!

© 2016 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

Compiler Silently Auto-Converts … Sometimes

What does this code do?

int x;

x = 3 + 4.6;

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

constant
has type
int

constant
has type
double

x has
type int

1.Convert 3 to double.
2.Add two doubles.
3.Convert sum to int

(truncates to 7).
4.Stores 7 in x.

Be Careful with Auto-Conversion

How does auto-conversion work?
When there’s a choice, into the “larger” type.

What does that mean?
Integers convert to floating-point.

What does the code
to the left print?

Nothing.
As you’d expect?

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

unsigned a = 10;
int b = -20;
if (a + b < 0) {

printf ("ok");
}

Nothing obvious.

Be Careful with Auto-Conversion

Auto-conversion happens silently:
no errors, and no warnings.
For anything unclear (anything with a choice),
avoid auto-conversion, or use explicit
conversions
(example to
right).

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

unsigned a = 10;
int b = -20;
if (((int)a) + b < 0) {

printf ("ok");
}

2/5/2018

8

Now Consider Three New Kinds of Operators

Let’s consider some new operators
(we’ll learn more later, too).

Let’s look at these:
◦ logical operators (and shortcutting)
◦ conditional operator
◦modification operators

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

Three Logical Operators

Logical operators in C include
◦AND: &&
◦OR: ||
◦NOT: !

Logical operators operate on truth values
(again, 0 is false, and non-zero is true).
Logical operators
◦evaluate to 0 (false), or
◦evaluate to 1 (true).

© 2016 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

Logical Operators Depend only on True/False in Operands

Declare: int A = 120; int B = 42;
Then…
(0 > A || 100 < A) evaluates to
(120 == A && 3 == B) evaluates to
!(A == B) evaluates to
!(0 < A && 0 < B) evaluates to
(!(B + 78)) == (!A) evaluates to

(So no bitwise calculations, just true/false.)

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 31

1
0
1
0
1

ECE 220: Computer Systems & Programming

Remember these Simple Boolean Properties?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 32

Easy, but useful to commit to memory for
analyzing circuits…

1 + A = 1 0· A = 0
1· A = A 0 + A = A
A + A = A A· A = A
A· A’ = 0 A + A’ = 1

(Each row gives two dual forms.)

Remember these
Boolean properties

from ECE120?

2/5/2018

9

Logical Operators Shortcut Evaluation in C

In C,
◦ logical AND and OR
◦ stop evaluating operands
◦ when the operator’s result is known.

For example,
0 && this_function_crashes ()

does NOT call the function.
The first operand is false (0 in C),
so the second operand (the function call) is
not evaluated.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 33ECE 220: Computer Systems & Programming

Logical AND Stops on False, Logical OR Stops on True

Similarly, if we write
1 || this_function_crashes ()

does NOT call the function.

The first operand is true (not 0 in C),
so the second operand (the function call) is
not evaluated.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 34ECE 220: Computer Systems & Programming

Use Shortcutting to Protect Unsafe/Undesired Actions

Here’s a more realistic example…
if (1 == scanf ("%d", &age) &&

0 <= printf ("Salary? ") &&

1 == scanf ("%d", &salary)) {

// use age and salary

}

scanf in these cases returns 1 on success,
and printf returns 8 (characters) on success.

© 2018 Steven S. Lumetta. All rights reserved. slide 35ECE 220: Computer Systems & Programming

Use Shortcutting to Protect Unsafe/Undesired Actions

And another one…
if (0 <= dist_sq &&

walk_p (me, sqrt (dist_sq))) {

// go for a walk

}

Calculating the square root (sqrt) of a
negative number may cause a crash.

© 2018 Steven S. Lumetta. All rights reserved. slide 36ECE 220: Computer Systems & Programming

2/5/2018

10

Conditional Operator is Shorthand for If/Then/Else

The code to the right
◦assigns one of two
values to A

◦based on a condition.

C provides a conditional operator
for this type of construct:

A = (B > 0 ? C : D);

© 2018 Steven S. Lumetta. All rights reserved. slide 37ECE 220: Computer Systems & Programming

if (B > 0) {
A = C;

} else {
A = D;

}

Increment and Decrement Change Integer Variables

C provides two operators to
◦ increment (++) and
◦decrement (--)
◦ integer variables.

One can write either operator before (pre-)
or after (post-) a variable name.

int i;
i++;// Used by themselves,
++i;// these are identical.

© 2018 Steven S. Lumetta. All rights reserved. slide 38ECE 220: Computer Systems & Programming

Read Increment and Decrement from Left to Right

The difference in pre- and post- versions
arises when one uses the value of the
expression.

Read left to right:
◦i++ : read the value, then increment i
◦++i: increment i, then read it

© 2018 Steven S. Lumetta. All rights reserved. slide 39ECE 220: Computer Systems & Programming

Example of Pre- and Post-Increment

For example …

What are i, j, and k afterward?
i is 19, j is 24, and k is 42 (19 + 23).

© 2018 Steven S. Lumetta. All rights reserved. slide 40ECE 220: Computer Systems & Programming

int i = 18;
int j = 23;
int k;

k = (++i) + (j++);

2/5/2018

11

Example of Pre- and Post-Increment

How about this one?

What are i, and j afterward?
Who cares?* Don’t write such code!
*The result is perhaps even undefined, meaning that

different compilers can generate different results.

© 2018 Steven S. Lumetta. All rights reserved. slide 41ECE 220: Computer Systems & Programming

int i = 18;
int j = 23;

j = (++i) + (j++)
+ (++j)
- (i--);

Modification Operators: Shorthand for Binary Operators

C supports
◦many modification operators for variables.
◦These are simply shorthand.

For example,
A += B; // same as A = A + B

A &= MASK; // same as A = A & MASK

(others: -=, *=, /=, %=, |=, ^=, <<=, >>=)

© 2018 Steven S. Lumetta. All rights reserved. slide 42ECE 220: Computer Systems & Programming

