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ECE 220: Computer Systems &
Programming

Expressions and Operators in C

(Partially a Review)

Expressions are Used to Perform Calculations

An expression is a calculation consisting of
variables, operators, and function calls.

For example,
A +42
A/B
Deposits - Withdrawals
scanf ("%f", &flt)
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Our Class Focuses on Four Types of Operator in C

The C language supports many operators.
In ECE120, you learned about four types:
o arithmetic operators

> bitwise Boolean operators

crelational / comparison operators
othe assignment operator

Let’s review those first.

Five Arithmetic Operators on Numeric Types

Arithmetic operators in C include
o addition: +
o subtraction: -

omultiplication: =
o division: /
°modulus: %  (integers only)

The C library includes many other functions,
such as exponentiation, logarithms, square
roots, and so forth.
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Arithmetic Mostly Does What You Expect

Declare: int A = 120; int B = 42;

Then...
A+ B evaluatesto 162
A —-B evaluates to 78
A*B evaluates to 5040
A% B evaluates to 36
A/B evaluates to... 2

What’s going on with division?

A Few Pitfalls of C Arithmetic

No checks for overflow, so be careful.
ocunsigned Iint A =0 — 1;
°Ais a large number!

Integer division
°Trying to divide by 0 ends the program
(floating-point produces infinity or NaN).

o Integer division evaluates to an integer,
so (100 /7 8) * 8 is not 100.
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C Behavior Sometimes Depends on the Processor

Integer division is rounded to an integer.
Rounding depends on the processor.
Most modern processors round towards 0, so...
11 / 3 evaluatesto 3

-11 / 3 evaluates to -3

Modulus A % B is defined such that
(A/ B) *B + (A% B) isequal to A
So (-11 % 3) evaluates to -2.
Modulus is not always positive.

Six Bitwise Operators on Integer Types

Bitwise operators in C include

> AND: &
°OR: [
°NOT: ~

> XOR: A

o left shift: <<

oright shift:  >>

In some languages, * means exponentation,
but not in the C language.
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Bitwise Operators Treat Numbers as Bits

Declare: int A = 120; 1int B = 42;

/* A = 0x00000078, B = 0x0000002A
using C"s notation for hexadecimal. */
Then...

A&B evaluates to 40 0x00000028

0000 0000 0000 0000 0000 0000 0111 1000 A 1 AND ¢
AND 0000 0000 0000 0000 0000 0000 0010 1010 pply 0

0000 0000 0000 0000 0000 0000 0010 1000  PAIrS of bits.

Bitwise Operators Treat Numbers as Bits

Declare: int A = 120; 1iInt B = 42;

/* A = 0x00000078, B = 0x0000002A
using C"s notation for hexadecimal. */
Then...

A &B evaluates to 40 0x00000028
Al B evaluates to 122 0x0000007A

~A evaluates to  -121 OxFFFFFF87
ANB evaluates to 82 0x00000052
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Left Shift by N Multiplies by 2N

Shifting left by N bits adds N Os on right.
oIt’s like multiplying by 2N.
o N bits lost on left! (Shifts can overflow.)
Declare: int A = 120;/* 0x00000078 */
unsigned int B = OxFFFFFFOO;
Then...
A << 2 evaluatesto 480 O0x000001EO
B << 4 evaluatesto (<B!) OxFFFFFOOO

Right Shift by N Divides by 2V

A question for you: What bits appear on the
left when shifting right?

Declare: int A = 120;/* 0x00000078 */
A >> 2 evaluates to 30 0x0000001E
What about OXFFFFFFOO >> 4?
Is OXFFFFFFOO equal to

-256 (/16 = -16, so insert 1s)? or equal to
4,294,967 ,040 (/16 = 268,435,440, insert 0s)?
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Right Shifts Depend on the Data Type

A C compiler uses the type of the variable to
decide which type of right shift to produce
For an int
> 2’s complement representation
o produces arithmetic right shift
o (copies the sign bit)
For an unsigned int
cunsigned representation
o produces logical right shift
° (inserts Os on left)
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Right Shift by N Divides by 2V

Declare: int A = -120;/* OxXFFFFFF88 */
unsigned int B = OxFFFFFFOO;

Then...

A >>
A >>
B >>
B >>

2  evaluates to
10 evaluates to
2  evaluates to
10 evaluates to

-30
-1

OXFFFFFFE2
OXFFFFFFFF
OX3FFFFFCO
OXO003FFFFF

Notice that right shifts round down.
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Six Relational Operators

Relational operators in C include

°less than: <

°less or equal to: <=

o equal: == (TWO equal signs)
°not equal: 1=

o greater or equal to: >=

o greater than: >

C operators cannot include spaces, nor can
they be reordered (so no "< =" nor "=<").
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Relational Operators Evaluate to 0 or 1

In C,

20 is false, and
o all other values are true.

Relational operators always
cevaluate to 0 when false, and
cevaluate to 1 when true.
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Relational Operators Also Depend on Data Type

Declare: int A
int B

IsA < B?

°Yes, -120 < 256.

> But if the same bit patterns were
interpreted using the unsigned
representation,

OxXFFFFFF88 > 0x00000100

As with shifts, a C compiler uses the data
type to perform the correct comparison.

-120;/* OXFFFFFF88 */
256;/* 0x00000100 */
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The Assignment Operator Can Change a Variable’s Value

The C language uses = as the assignment
operator. For example,

A = 42

changes the bits of variable A
to represent the number 42.

One can write any expression on the
right-hand side of assignment. So

A=A+1
increments the value of variable A by 1.
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Assignment Calculates an Expression, then Writes Bits

The code for an assignment
1. calculates the expression, then
2. writes the result to the address
for the left-hand side.
For example, given
A=B+C LD RO,B

A compiler produces LD R1,C
something akin to this code. ABD RO,RO,R1
ST RO,A

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 19

Assignments Write to Memory Addresses

A C compiler can not solve equations.
For example,
A+ B = 42

results in a compilation error (the compiler
cannot produce 1nstructions for you).

The left-hand side of an assignment
must have an address.

An expression with an address is called
an l-value. Variables are l-values.
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Assignments Evaluate to their Right-Hand Side

Note: an assignment is an expression.

Assignment evaluates to
the value of the right-hand side.

So, for example, one can write:
A =B =0; // same as A = (B = 0);

The expression “B = 0” evaluates to 0,
so A is also assigned the value 0.

Pitfall of the Assignment Operator

Programmers sometimes
owrite “=” (assignment)
oinstead of “==" (comparison for equality).

For example, to compare variable A to 42,
°one might want to write “A == 42”
obut instead write “A = 42” by accident.

A C compiler can sometimes warn you
(in which case, fix the mistake!).
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Good Programming Habits Reduce Bugs

To avoid these mistakes, get in the habit of
writing comparisons with the variable on the
right.

For example, instead of “A == 427, write
42 ==
If you make a mistake and write “42 = A”,

othe compiler will always tell you,
cand you can fix the mistake.

Operator Precedence in C is Sometimes Obvious

A task for you:

Evaluate the C exXpression: skmeimsgem
Did you get 42? 10 + 4 * 8
Why not 112? (10 +4) X 8
Multiplication comes before addition
°in elementary school
cand in C!

The order of operations is
called operator precedence.
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Another task for you:
Evaluate the C expression: 10 / 2 / 3

Did you get 1.67?

Is it a friend’s birthday?

Perhaps it causes a divide-by-0 error?
Or maybe it’s ... 1?  (10/2)/ 3, as int

If the order is not obvious,
> Do NOT look it up.
> Add parentheses!
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How does auto-conversion work?
When there’s a choice, into the “larger” type.
What does that mean? Nothing obvious.
Integers convert to floating-point.

What does the code
to the left print?

Nothing.
As you’d expect?
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What does this code do?

2/5/2018

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 26

Auto-conversion happens silently:
no errors, and no warnings.

For anything unclear (anything with a choice),
avoid auto-conversion, or use explicit
conversions
(example to
right).
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Now Consider Three New Kinds of Operators

Let’s consider some new operators
(we’ll learn more later, too).

Let’s look at these:

ological operators (and shortcutting)
o conditional operator

> modification operators

Three Logical Operators

Logical operators in C include

o AND: &&
> OR: |
°NOT: !

Logical operators operate on truth values
(again, 0 is false, and non-zero is true).
Logical operators

cevaluate to 0 (false), or

cevaluate to 1 (true).
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Logical Operators Depend only on True/False in Operands

Declare: int A = 120; int B = 42;
Then...

(0> A |]] 100 < A) evaluates to 1
(120 == A && 3 == B) evaluatesto O
(A == B) evaluates to 1
I(0 < A& 0 < B) evaluates to 0
(1B + 78)) == (1A) evaluatesto 1l

(So no bitwise calculations, just true/false.)

Remember these Simple Boolean Properties?

Easy, but useful to commit to memory for
analyzing circuits...

1+A=1 0-A=0
1-A=A 0+A=A
A+A=A A-A=A

A-AN=0 Remember these
. Boolean properties
(Each row give ¢,y BCE1207
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Logical Operators Shortcut Evaluation in C

In C,
°logical AND and OR
> stop evaluating operands
°cwhen the operator’s result is known.
For example,

0 && this_function_crashes ()
does NOT call the function.

The first operand is false (0 in C),
so the second operand (the function call) is
not evaluated.
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Logical AND Stops on False, Logical OR Stops on True

Similarly, if we write
1 || this_function_crashes ()
does NOT call the function.

The first operand is true (not 0 in C),
so the second operand (the function call) is
not evaluated.
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Use Shortcutting to Protect Unsafe/Undesired Actions

Here’s a more realistic example...
if (1 == scanf (""%d", &age) &&
0 printf ('Salary? ") &&
1 == scanf ("'%d", &salary)) {
// use age and salary

A
1

}

scanT in these cases returns 1 on success,
and printf returns 8 (characters) on success.
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Use Shortcutting to Protect Unsafe/Undesired Actions

And another one...
if (0 <= dist_sq &&
walk_p (me, sgrt (dist_sq))) {
// go for a walk
}

Calculating the square root (sqrt) of a
negative number may cause a crash.
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The code to the right

> assigns one of two
values to A

°cbased on a condition.

C provides a conditional operator
for this type of construct:

A=(@B>07?C : D);
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provides two operators to
°increment (++) and
odecrement (--)
ointeger variables.

One can write either operator before (pre-)
or after (post-) a variable name.

int i;
i++;// Used by themselves,
++i;// these are identical.

The erence in pre- and post- versions
arises when one uses the value of the
expression.

Read left to right:
o i++ : read the value, then increment i
°++1i: increment i, then read it
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For example ...

What are 1, j, and k afterward?
iis 19, is 24, and k is 42 (19 + 23).
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°many modification operators for variables.
°These are simply shorthand.

For example,

A += B; // same as A = A+ B
What are i, and j afterward? A &= MASK; // same as A = A & MASK

Who cares?* Don’t write such code!

*The result is perhaps even undefined, meaning that
D o g (others: —-=, *=, /=, %=,

different compilers can generate different results. = A:, <<=, >>:)
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