University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Expressions and Operators in C

(Partially a Review)

Expressions are Used to Perform Calculations

An expression is a calculation consisting of
variables, operators, and function calls.

For example,
A +42
A/B
Deposits - Withdrawals
scanf ("%f", &flt)

2/5/2018

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved. slide 1

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved.

Our Class Focuses on Four Types of Operator in C

The C language supports many operators.
In ECE120, you learned about four types:
o arithmetic operators

> bitwise Boolean operators

crelational / comparison operators
othe assignment operator

Let’s review those first.

Five Arithmetic Operators on Numeric Types

Arithmetic operators in C include
o addition: +
o subtraction: -

omultiplication: =
o division: /
°modulus: % (integers only)

The C library includes many other functions,
such as exponentiation, logarithms, square
roots, and so forth.

ECE 220: Computer Systems & Programming © 20162018 Steven S. Lumetta. All rights reserved.

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved.

Arithmetic Mostly Does What You Expect

Declare: int A = 120; int B = 42;

Then...
A+ B evaluatesto 162
A —-B evaluates to 78
A*B evaluates to 5040
A% B evaluates to 36
A/B evaluates to... 2

What’s going on with division?

A Few Pitfalls of C Arithmetic

No checks for overflow, so be careful.
ocunsigned Iint A =0 — 1;
°Ais a large number!

Integer division
°Trying to divide by 0 ends the program
(floating-point produces infinity or NaN).

o Integer division evaluates to an integer,
so (100 /7 8) * 8 is not 100.

2/5/2018

ECE 220: Computer Systems & Programming

©2016 Steven S. Lumetta. All rights reserved. slide 5

ECE 220: Computer Systems & Programming ©2016 Steven S. Lumetta. Al rights reserved. slide 6

C Behavior Sometimes Depends on the Processor

Integer division is rounded to an integer.
Rounding depends on the processor.
Most modern processors round towards 0, so...
11 / 3 evaluatesto 3

-11 / 3 evaluates to -3

Modulus A % B is defined such that
(A/ B) *B + (A% B) isequal to A
So (-11 % 3) evaluates to -2.
Modulus is not always positive.

Six Bitwise Operators on Integer Types

Bitwise operators in C include

> AND: &
°OR: [
°NOT: ~

> XOR: A

o left shift: <<

oright shift: >>

In some languages, * means exponentation,
but not in the C language.

ECE 220: Computer Systems & Programming ©2016 Steven S. Lumetta. All rights reserved.

ECE 220: Computer Systems & Programming ©2016 Steven S. Lumetta. Al rights reserved. slide 8

Bitwise Operators Treat Numbers as Bits

Declare: int A = 120; 1int B = 42;

/* A = 0x00000078, B = 0x0000002A
using C"s notation for hexadecimal. */
Then...

A&B evaluates to 40 0x00000028

0000 0000 0000 0000 0000 0000 0111 1000 A 1 AND ¢
AND 0000 0000 0000 0000 0000 0000 0010 1010 pply 0

0000 0000 0000 0000 0000 0000 0010 1000 PAIrS of bits.

Bitwise Operators Treat Numbers as Bits

Declare: int A = 120; 1iInt B = 42;

/* A = 0x00000078, B = 0x0000002A
using C"s notation for hexadecimal. */
Then...

A &B evaluates to 40 0x00000028
Al B evaluates to 122 0x0000007A

~A evaluates to -121 OxFFFFFF87
ANB evaluates to 82 0x00000052

2/5/2018

ECE 220: Computer Systems & Programming ©2016-2017 Steven S. Lumetta. All rights reserved.

ECE 220: Computer Systems & Programming ©2016-2017 Steven S. Lumetta. All rights reserved.

slide 10

Left Shift by N Multiplies by 2N

Shifting left by N bits adds N Os on right.
oIt’s like multiplying by 2N.
o N bits lost on left! (Shifts can overflow.)
Declare: int A = 120;/* 0x00000078 */
unsigned int B = OxFFFFFFOO;
Then...
A << 2 evaluatesto 480 O0x000001EO
B << 4 evaluatesto (<B!) OxFFFFFOOO

Right Shift by N Divides by 2V

A question for you: What bits appear on the
left when shifting right?

Declare: int A = 120;/* 0x00000078 */
A >> 2 evaluates to 30 0x0000001E
What about OXFFFFFFOO >> 4?
Is OXFFFFFFOO equal to

-256 (/16 = -16, so insert 1s)? or equal to
4,294,967 ,040 (/16 = 268,435,440, insert 0s)?

ECE 220: Computer Systems & Programming ©2016 Steven S. Lumetta. All rights reserved.

slide 11

ECE 220: Computer Systems & Programming ©2016 Steven S. Lumetta. Al rights reserved.

slide 12

Right Shifts Depend on the Data Type

A C compiler uses the type of the variable to
decide which type of right shift to produce
For an int
> 2’s complement representation
o produces arithmetic right shift
o (copies the sign bit)
For an unsigned int
cunsigned representation
o produces logical right shift
° (inserts Os on left)

ECE 220: Computer Systems & Programming ©2016 Steven S. Lumetta. All rights reserved.

slide 13

Right Shift by N Divides by 2V

Declare: int A = -120;/* OxXFFFFFF88 */
unsigned int B = OxFFFFFFOO;

Then...

A >>
A >>
B >>
B >>

2 evaluates to
10 evaluates to
2 evaluates to
10 evaluates to

-30
-1

OXFFFFFFE2
OXFFFFFFFF
OX3FFFFFCO
OXO003FFFFF

Notice that right shifts round down.

ECE 220: Computer Systems & Programming

© 2016 Steven S. Lumetta. All rights reserved.

slide 14

Six Relational Operators

Relational operators in C include

°less than: <

°less or equal to: <=

o equal: == (TWO equal signs)
°not equal: 1=

o greater or equal to: >=

o greater than: >

C operators cannot include spaces, nor can
they be reordered (so no "< =" nor "=<").

ECE 220: Computer Systems & Programming ©2016 Steven S. Lumetta. All rights reserved.

slide 15

Relational Operators Evaluate to 0 or 1

In C,

20 is false, and
o all other values are true.

Relational operators always
cevaluate to 0 when false, and
cevaluate to 1 when true.

ECE 220: Computer Systems & Programming

© 2016 Steven S. Lumetta. All rights reserved.

slide 16

2/5/2018

Relational Operators Also Depend on Data Type

Declare: int A
int B

IsA < B?

°Yes, -120 < 256.

> But if the same bit patterns were
interpreted using the unsigned
representation,

OxXFFFFFF88 > 0x00000100

As with shifts, a C compiler uses the data
type to perform the correct comparison.

-120;/* OXFFFFFF88 */
256;/* 0x00000100 */

ECE 220: Computer Systems & Programming ©2016 Steven S. Lumetta. All rights reserved. slide 17

The Assignment Operator Can Change a Variable’s Value

The C language uses = as the assignment
operator. For example,

A = 42

changes the bits of variable A
to represent the number 42.

One can write any expression on the
right-hand side of assignment. So

A=A+1
increments the value of variable A by 1.

ECE 220: Computer Systems & Programming ©2016 Steven S. Lumetta. Al rights reserved. slide 18

Assignment Calculates an Expression, then Writes Bits

The code for an assignment
1. calculates the expression, then
2. writes the result to the address
for the left-hand side.
For example, given
A=B+C LD RO,B

A compiler produces LD R1,C
something akin to this code. ABD RO,RO,R1
ST RO,A

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 19

Assignments Write to Memory Addresses

A C compiler can not solve equations.
For example,
A+ B = 42

results in a compilation error (the compiler
cannot produce 1nstructions for you).

The left-hand side of an assignment
must have an address.

An expression with an address is called
an l-value. Variables are l-values.

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved. slide 20

2/5/2018

Assignments Evaluate to their Right-Hand Side

Note: an assignment is an expression.

Assignment evaluates to
the value of the right-hand side.

So, for example, one can write:
A =B =0; // same as A = (B = 0);

The expression “B = 0” evaluates to 0,
so A is also assigned the value 0.

Pitfall of the Assignment Operator

Programmers sometimes
owrite “=” (assignment)
oinstead of “==" (comparison for equality).

For example, to compare variable A to 42,
°one might want to write “A == 42”
obut instead write “A = 42” by accident.

A C compiler can sometimes warn you
(in which case, fix the mistake!).

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 21

ECE 220: Computer Systems & Programming ©2016 Steven S. Lumetta. Al rights reserved.

slide 22

Good Programming Habits Reduce Bugs

To avoid these mistakes, get in the habit of
writing comparisons with the variable on the
right.

For example, instead of “A == 427, write
42 ==
If you make a mistake and write “42 = A”,

othe compiler will always tell you,
cand you can fix the mistake.

Operator Precedence in C is Sometimes Obvious

A task for you:

Evaluate the C exXpression: skmeimsgem
Did you get 42? 10 + 4 * 8
Why not 112? (10 +4) X 8
Multiplication comes before addition
°in elementary school
cand in C!

The order of operations is
called operator precedence.

2/5/2018

ECE 220: Computer Systems & Programming ©2016 Steven S. Lumetta. All rights reserved.

slide 23

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved.

slide 24

Another task for you:
Evaluate the C expression: 10 / 2 / 3

Did you get 1.67?

Is it a friend’s birthday?

Perhaps it causes a divide-by-0 error?
Or maybe it’s ... 1? (10/2)/ 3, as int

If the order is not obvious,
> Do NOT look it up.
> Add parentheses!

ECE 220: Computer Systems & Programming © 2016 Steven S. Lumetta. All rights reserved.

slide 25

How does auto-conversion work?
When there’s a choice, into the “larger” type.
What does that mean? Nothing obvious.
Integers convert to floating-point.

What does the code
to the left print?

Nothing.
As you’d expect?

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved.

slide 27

What does this code do?

2/5/2018

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 26

Auto-conversion happens silently:
no errors, and no warnings.

For anything unclear (anything with a choice),
avoid auto-conversion, or use explicit
conversions
(example to
right).

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 28

Now Consider Three New Kinds of Operators

Let’s consider some new operators
(we’ll learn more later, too).

Let’s look at these:

ological operators (and shortcutting)
o conditional operator

> modification operators

Three Logical Operators

Logical operators in C include

o AND: &&
> OR: |
°NOT: !

Logical operators operate on truth values
(again, 0 is false, and non-zero is true).
Logical operators

cevaluate to 0 (false), or

cevaluate to 1 (true).

2/5/2018

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 29

ECE 220: Computer Systems & Programming ©2016 Steven S. Lumetta. Al rights reserved. slide 30

Logical Operators Depend only on True/False in Operands

Declare: int A = 120; int B = 42;
Then...

(0> A |]] 100 < A) evaluates to 1
(120 == A && 3 == B) evaluatesto O
(A == B) evaluates to 1
I(0 < A& 0 < B) evaluates to 0
(1B + 78)) == (1A) evaluatesto 1l

(So no bitwise calculations, just true/false.)

Remember these Simple Boolean Properties?

Easy, but useful to commit to memory for
analyzing circuits...

1+A=1 0-A=0
1-A=A 0+A=A
A+A=A A-A=A

A-AN=0 Remember these
. Boolean properties
(Each row give ¢,y BCE1207

ECE 220: Computer Systems & Programming © 20162018 Steven S. Lumetta. All rights reserved. slide 81

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 32

Logical Operators Shortcut Evaluation in C

In C,
°logical AND and OR
> stop evaluating operands
°cwhen the operator’s result is known.
For example,

0 && this_function_crashes ()
does NOT call the function.

The first operand is false (0 in C),
so the second operand (the function call) is
not evaluated.

ECE 220: Computer Systems & Programming © 20162018 Steven S. Lumetta. All rights reserved.

slide 33

Logical AND Stops on False, Logical OR Stops on True

Similarly, if we write
1 || this_function_crashes ()
does NOT call the function.

The first operand is true (not 0 in C),
so the second operand (the function call) is
not evaluated.

ECE 220: Computer Systems & Programming ©2016-2018 Steven S. Lumetta. All rights reserved. slide 34

Use Shortcutting to Protect Unsafe/Undesired Actions

Here’s a more realistic example...
if (1 == scanf (""%d", &age) &&
0 printf ('Salary? ") &&
1 == scanf ("'%d", &salary)) {
// use age and salary

A
1

}

scanT in these cases returns 1 on success,
and printf returns 8 (characters) on success.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 35

Use Shortcutting to Protect Unsafe/Undesired Actions

And another one...
if (0 <= dist_sq &&
walk_p (me, sgrt (dist_sq))) {
// go for a walk
}

Calculating the square root (sqrt) of a
negative number may cause a crash.

ECE 220: Computer Systems & Programming ©2018 Steven §. Lumetta. Al rights reserved. slide 36

2/5/2018

The code to the right

> assigns one of two
values to A

°cbased on a condition.

C provides a conditional operator
for this type of construct:

A=(@B>07?C : D);

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 37

provides two operators to
°increment (++) and
odecrement (--)
ointeger variables.

One can write either operator before (pre-)
or after (post-) a variable name.

int i;
i++;// Used by themselves,
++i;// these are identical.

The erence in pre- and post- versions
arises when one uses the value of the
expression.

Read left to right:
o i++ : read the value, then increment i
°++1i: increment i, then read it

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 38

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 39

For example ...

What are 1, j, and k afterward?
iis 19, is 24, and k is 42 (19 + 23).

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 40

2/5/2018

1N

2/5/2018

°many modification operators for variables.
°These are simply shorthand.

For example,

A += B; // same as A = A+ B
What are i, and j afterward? A &= MASK; // same as A = A & MASK

Who cares?* Don’t write such code!

*The result is perhaps even undefined, meaning that
D o g (others: —-=, *=, /=, %=,

different compilers can generate different results. = A:, <<=, >>:)

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 41 ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 42

11

