

Our Class Focuses on Four Types of Operator in C

The **C** language supports many operators.

In ECE120, you learned about four types:

- arithmetic operators
- **bitwise** Boolean operators
- relational / comparison operators
- the **assignment** operator

Let's review those first.

ECE 220: Computer Systems & Programming

© 2016-2018 Steven S. Lumetta. All rights reserved.

ved.

slide 3

1

Arithmetic Mostly Does What You Expect	A Few Pitfalls of C Arithmetic
Declare: int A = 120; int B = 42;	No checks for overflow, so be careful.
Then	• unsigned int A = 0 - 1;
A + B evaluates to 162	• A is a large number!
A - B evaluates to 78	Integer division
A * B evaluates to 5040	• Trying to divide by 0 ends the program
A % B evaluates to 36	(floating-point produces infinity or NaN).
A / B evaluates to 2	• Integer division evaluates to an integer,
What's going on with division?	so (100 / 8) * 8 is not 100.
ECE 220: Computer Systems & Programming © 2016 Steven S. Lumetta. All rights reserved. slide 5	ECE 220: Computer Systems & Programming C 2016 Steven S. Lumetta. All rights reserved. slide 6

	C Behavior Sometimes Depends on the Processor				
	Integer division is rounded to an integer.				
	Rounding depends on the processor.				
	Most modern processors round towards 0, so				
	11 / 3 evaluates to 3				
	-11 / 3 evaluates to -3				
	Modulus A B is defined such that				
	(A / B) * B + (A % B) is equal to A				
	So (-11 % 3) evaluates to -2.				
	Modulus is not always positive.				
_	ECE 220: Computer Systems & Programming © 2016 Steven S. Lumetta. All rights reserved.	slide 7			

Six Bitwise Operators on Integer Types					
Bitwise operat	ors in C ir	nclude			
• AND:	&				
• OR:					
• NOT:	~				
• XOR:	^				
• left shift:	<<				
• right shift:	>>				
In some languages, ^ means exponentation, but not in the C language.					
ECE 220: Computer Systems & Prog	amming © 5	2016 Steven S. Lumetta. All rights reserved.	slide 8		

e: int A = 120; int B = 42; = 0x00000078, B = 0x000002A
C's notation for hexadecimal. */
evaluates to 40 0x0000028 evaluates to 122 0x000007A evaluates to -121 0xFFFFF87 evaluates to 82 0x0000052

slide 11

Left Shift	by N	Multiplies	by 2^N
------------	------	-------------------	----------

Right Shift by N Divides by 2 ^N	
A question for you: What bits appear on the left when shifting right?	
Declare: int A = 120;/* 0x00000078 */	
A >> 2 evaluates to 30 0x000001E	
What about 0xFFFFF00 >> 4 ?	
Is 0xffffff00 equal to	
-256 (/16 = -16 , so insert 1s)? or equal to	
4,294,967,040 (/16 = 268,435,440, insert 0s)?	
ECE 220: Computer Systems & Programming © 2016 Steven S. Lumetta. All rights reserved.	slide 12

slide 15

Six Relational Operators

Relational operators in C include				
• less than:	<			
• less or equal to:	<=			
• equal:	==	(TWO equal signs)		
• not equal:	!=			
• greater or equal to:	>=			
• greater than:	>			
C operators cannot in they be reordered (so	nclude no "<	e spaces, nor can =" nor "=<").		
ECE 220: Computer Systems & Programming	© 2016 S	teven S. Lumetta. All rights reserved.		

Good Programming Habits Reduce Bugs

To avoid these mistakes, get in the habit of writing comparisons with the variable on the right.

For example, instead of "A == 42", write

$$42 == 2$$

If you make a mistake and write "42 = A", • the compiler will always tell you,

• and you can fix the mistake.

ECE 220: Computer Systems & Programming

 \mathbbm{O} 2016 Steven S. Lumetta. All rights reserved.

rights reserved.

slide 23

Operator Precedence in C is Sometimes Obvious

Be Careful with Auto-Conversion

How does auto-conversion work? When there's a choice, into the "larger" type. What does that mean? Nothing obvious. Integers convert to floating-point.

unsigned a = 10; int b = -20; if (a + b < 0) { printf ("ok"); }

ECE 220: Computer Systems & Programming

What does the code to the left print? Nothing. As you'd expect?

slide 27

© 2018 Steven S. Lumetta. All rights reserved.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Logical Operators Depend only on True/False in Operand				
Declare: int A = 120; Then	int B = 42;			
(0 > A 100 < A)	evaluates to 1			
(120 == A && 3 == B)	evaluates to 0			
!(A == B)	evaluates to 1			
!(0 < A && 0 < B)	evaluates to 0			
(!(B + 78)) == (!A)	evaluates to 1			
(So no bitwise calculatio	ns, just true/false.)			
ECE 220: Computer Systems & Programming © 2016-20	18 Steven S. Lumetta. All rights reserved.	slide 31		

Remember these Simple Boolean Properties? Easy, but useful to commit to memory for analyzing circuits					
$1 + A = 1$ $1 \cdot A = A$ $A + A = A$	$0 \cdot A = 0$ $0 + A = A$ $A \cdot A = A$				
A · A' = 0 (Each row give	Remember these Boolean properties from ECE120?				
ECE 120: Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.	slide 32			

