
1/24/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

High-Level Languages

ECE 220: Computer Systems & Programming © 2016-2018 Steven S. Lumetta. All rights reserved. slide 1

Programming Means Translating a Task into Instructions

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 2

Programming means translating
◦ from a task specification
(in human language)

◦ into instructions
(from an ISA).

As you already know,
◦ some of this process can be automated
◦ (done by computers),
◦ such as turning assembly language into bits.

ECE 220: Computer Systems & Programming

Few Programmers Write Instructions (Assembly Code)

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 3

In ECE120, you learned
how to design a computer.

But computer instructions are quite
simple (add two numbers, copy some bits).

Not many programmers
use them directly.

ECE 220: Computer Systems & Programming

Challenge: Semantic Gap Between Human and Computer

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 4

Problems/Tasks

Algorithms

Machine/Instruction Set
Architecture (ISA)

Microarchitecture

Circuits

Devices

Computer Language

There has been substantial
effort to bridge this gap
for more than 60 years.

ECE 220: Computer Systems & Programming

The difficulty is the
semantic gap between
human expression and

computational
capabilities.

1/24/2018

2

Most Programs Are Written in High-Level Languages

FORTRAN (FORmula TRANSlator)
◦was introduced in 1954
◦ to help scientists express equations
in a more natural way.

Since then,
◦ thousands of languages have been invented,
◦with tens of them widely used commercially.

Most programs are written in these
languages.

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Language Evolution is Convoluted

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Algol60 (syntax
of most imperative

languages)

LISP
(functional
languages)

CLU (type &
control

abstractions)

Simula (class
and interface

specifications)

Smalltalk
(object notions)

C (basic
syntax)

C++ Java

Some Languages Can Be Compiled to Instructions

Languages can be compiled or interpreted.

Compiled languages include
FORTRAN, Pascal, C, and C++.

Code written in compiled languages
◦ is translated to assembly language
◦by a program called a compiler.
◦After assembly, the code runs
directly on a computer.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Interpreted Languages Require an Interpreter to Execute

Interpreted languages include
Perl, Python, Javascript, and Java.

Code written in interpreted languages
◦ is used as input to another program
(called an interpreter)

◦ that executes the code written in the
interpreted language.

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

1/24/2018

3

JIT Compilation Focuses on the Code Being Used

In some cases,
◦ interpreted languages may be
◦partially compiled to instructions
◦when executed.

Usually, only the most frequently
used parts of the program are compiled.

This approach is called Just In Time (JIT)
compilation, and is often used in
Java Virtual Machines (JVMs).

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

A Brief History of C

The C programming language was
◦developed by Dennis Ritchie in 1972
◦ to simplify the task of writing Unix.

C has a transparent mapping to typical ISAs:
◦ easy to understand the mapping
◦ easy to teach a computer:
C compiler (a program) converts a
C program into instructions

C was first standardized in 1989 by ANSI.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

Our Class Starts with C. Here’s Why.

As mentioned,
◦C is easy to translate
(to LC-3, for example)

◦ so you can understand exactly
what a compiler does.

C syntax is similar to that of
many useful languages.

To write C++ well, you must
be able to write the C part well.

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

compiler (strict sense)

front end
(language dependent)

back end
(ISA dependent)

Overview of the C Compilation Process

slide 12

C
source
code

C
header

files

preprocessed
source

C
preprocessor

source
code

analysis
IR

target
code

synthesis

IR = intermediate
representation

assembly
code

© 2018 Steven S. Lumetta. All rights reserved.ECE 220: Computer Systems & Programming

1/24/2018

4

Process Same as Before with Assembly Code

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 13

file

process

symbol
meaningsassembly

code

assembler

object
file

linker

ECE 220: Computer Systems & Programming

other object
files and
libraries

executable

loader

dynamically
linked/loaded
library (DLL)

A Compiler Turns Preprocessed Source into Assembly

But doesn’t the compiler turn
C code into an executable?

Actually, no.

As shown in the diagram, a compiler
◦ turns preprocessed source code
◦ (with header files incorporated,
◦and macros expanded)
◦ into assembly code.

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

A Compiler Can Also Invoke Other Programs

A compiler can also execute
(by default, but optionally)
◦ a preprocessor,
◦ an assembler, and
◦ a linker.

What if you don’t want all of the steps?*
◦ Use -E to obtain preprocessed output.
◦ Use -S to obtain assembly code.
◦ Use -c to obtain an object file (.o).

*These are the gcc options.

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

Too Many Possible Combinations of Language and ISA

Why are compilers built in two parts?

Imagine developing a compiler…
◦ languages: C, C++, Pascal, Java, and more
◦ ISAs: x86, ARM, PowerPC, Power, and more

Do you develop a separate compiler
◦ for every language/ISA combination?
◦10 languages, 10 ISAs → 100 compilers!

No.

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

1/24/2018

5

Front End and Back End Operate Independently

Instead,
◦ front end converts language
(such as C) to an intermediate
representation (IR),
such as …

◦ (IR can be optimized.)
◦back end converts IR to assembly code.*

(10 + 10) / 2 = 10 compilers to write (<< 100)!
*Take CS426 (421 for front-end, with other stuff).

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

+

×

1 2

3

trees!

A Modern Example

Chris Lattner (UIUC CS Ph.D., 2005)
◦developed LLVM compiler framework
◦with Vikram Adve’s group as a grad student,
◦and continued to work on it within Apple.

In 2010, he
◦ started to develop the Swift
programming language,

◦using the LLVM compiler (IR and back end)
as a starting point.

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

One Benefit of High-Level Languages: Managing Variables

What good are high-level languages?

Remember deciding (in examples and MPs)
◦ what information to store, and
◦ where to put it
◦ (which register, or which memory location)?

In high-level languages,
◦ programmer specifies symbolic name
(like a label in assembly) and

◦ data type.

Compiler decides where to put each variable.

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

High-Level Languages Support Complex Data Types

The benefit generalizes to include…
◦ structures (such as events in MP2), and
◦arrays (event list in MP2), and
◦pointers (in the schedule in MP2).*

Compiler
◦knows how each maps into memory,
◦and manages access for you by name.

*We’ll see how later in our class.

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

1/24/2018

6

High-Level Languages Provide Operators and Libraries

High-level languages also provide
◦ a set of operators
◦ that is not (too) dependent on the ISA
◦ so you do not need to write

right shift, OR, XOR, and so forth.
◦ standard libraries for
◦ I/O,
◦ math,
◦ graphics,
◦ threads,
◦ and many other things.

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

How to Learn C Programming in ECE220

In lecture, you will learn from examples.

Exact rules of syntax are left to you.

To be good at programming,
you need practice
◦reading code (examples in lecture / online),
◦writing code (MPs), and
◦ testing code (MPs, one focused on testing)

Ask lots of questions!

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

Learn to Program by Reading Code

You can learn a lot by reading code

◦How to express types of problems.

◦How to properly use application
programming interfaces (APIs) for
networking, mathematics, graphics, sound,
animation, user interfaces, and so forth.

◦How to make code easy to read (style).

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

It’s Often Necessary to Read Code to Understand It

We try to make you write plenty of comments.

When we give you code for class assignments,
it will be well-commented (DISCLAIMER:
THIS IS NOT A WARRANTY!)

In the real world…
◦You will be lucky to find comments.
◦You will be really lucky to find comments in
a language that you understand.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

1/24/2018

7

Learn to Test Your Code

How do you know that your program works?
There’s only one correct answer: test it!*

Brooks’ Rule of Thumb
◦ 1/3 planning and design
◦ 1/6 writing the program
◦ 1/2 testing

Just because your program compiles
does not mean that your program works!

*Becoming a good tester will take years.
Don’t worry if it seems tough.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

A Starting Point: Every Statement Must be Executed

How can we test our program?

Let’s start with something simple.

Let’s say that we have a statement
that is never executed by tests.

Does the statement work correctly?

How can we know? We have no tests!

So, no, it does not work correctly.

At a minimum, we must execute every
statement (called full code coverage).

© 2016 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

