
1/30/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

The Stack Abstraction

ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved. slide 1

Conventions Provide Implicit Information

What does this mean: 1 + 2 × 3 ?
It could mean (1 + 2) × 3 = 9 .
Or it could mean 1 + (2 × 3) = 7 .

Most (all?) cultures on Earth
◦ choose this one
◦by convention.

© 2018 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Arithmetic with Trees is Unambiguous

We can
◦eliminate ambiguity
◦by using trees.

(1 + 2) × 3 1 + (2 × 3)

© 2018 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

+

×

1 2

3 ×

+

32

1

Why Not Always Use Trees?

Since you’re in ECE,
◦ I’ve asked your Math professors
◦ to let you use trees
◦ for all future homework.

Sound good? Here’s some practice…
Write F(x,y) and the partial derivatives of
F(x,y) in x and y…using trees:

F(x,y) = 	 cos 20

© 2018 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

Trees are painful
for humans!

1/30/2018

2

Other Notations are Also Unambiguous

Our usual notation (“1 + 2”)
◦ is called infix because
◦operators appear in between operands.
Postfix (and prefix) notation
◦ is not ambiguous,
◦So it does not require parentheses!

For 20+ years, all HP engineering
calculators used postfix (“reverse
Polish”)…ask your parents.

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Postfix Notation is a Programming Language!

For example, we write
	 	 	 	

.

As a tree, we draw…

In postfix, we write
8 9 12 + 2 ÷

This version (postfix) is a program!

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

÷

2
×

+

8 9

12

Let’s Run the Program…

Our program: 8 9 12 + 2 ÷
Execute the “program” using a stack of paper:
◦ For a number,

1. write number on a sheet of paper, and
2. place it on top of the stack.

◦ For an operator,
1. grab the top two sheets from the stack,
2. perform the operation,
3. write result on a sheet of paper, and
4. place it on top of the stack.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

R6 Points to the Top of Our Stack in LC-3 Memory

To compute our postfix program,
we used a stack of paper.

Can we use computer memory instead?
Do you remember the idea of
◦ putting subroutine inputs/outputs
◦ into memory, then
◦ using a register
◦ to point to those memory locations?

For LC-3, use R6 to point to the top of our stack.*
*A convention. Most ISAs have a register called the stack pointer.

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

1/30/2018

3

When R6 Points to Base of Stack, Stack is Empty

Initially,
◦R6 points to “base” of stack,
◦ let’s say address x4000,
◦and the stack is empty.
What is in memory above
the top of the stack?
Hint: not “air,”

nor “blanks.”
By convention, those bits
are NOT on the stack.

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

x4000
x3FFF
x3FFE
x3FFF
x3FFD

.
.
.

R6→
Bits!

To “Execute” a Number Instruction, Push Onto Stack

Let’s run our program again:
8 9 12 + 2 ÷

The first instruction is “8”.
How can we put an “8”
on the stack?
; Assume 8 in R0.

; make space first!
; then store the 8

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

x4000
x3FFF
x3FFE
x3FFF
x3FFD

.
.
.

R6→
#8R6→

ADD R6,R6,#-1
STR R0,R6,#0

called
a “push”

Pushing R0 Always Uses the Same Two Instructions

Continue executing!
8 9 12 + 2 ÷

The next instruction is “9”.
How can we put a “9”
on the stack?
; (Put 9 in R0 here.)

; make space first!
; then store the 9

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

x4000
x3FFF
x3FFE
x3FFF
x3FFD

.
.
.

R6→
#9R6→

ADD R6,R6,#-1
STR R0,R6,#0

#8

same two
inst.!

The Next Instruction is Multiply

What about multiply?
8 9 12 + 2 ÷

Assume that someone
has written a multiply
routine:
◦ subroutine MULT
◦R0, R1 input operands
◦R0 output (R0 ← R0 × R1)

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

x4000
x3FFF
x3FFE
x3FFF
x3FFD

.
.
.

#9R6→
#8

1/30/2018

4

Example of a MULT Subroutine

MULT
AND R2,R2,#0
ADD R1,R1,#0
BRz MULTDONE
MULTLOOP
ADD R2,R2,R0
ADD R1,R1,#-1
BRnp MULTLOOP
MULTDONE
ADD R0,R2,#0
RET

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

What is the call
interface for this

subroutine?

Inputs: R0, R1
Output: R0 ← R0 × R1
Caller-saved:

R1, R2, R7
Callee-saved:

R3, R4, R5, R6

To Multiply: Pop Twice, Multiply, Push Product

STACKMULT

; pop 9 into R1
; remove space

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

x4000
x3FFF
x3FFE
x3FFF
x3FFD

.
.
.

#9R6→
#8R6→

ADD R6,R6,#1
LDR R1,R6,#0

Is the “9” still
in memory?

Probably, but it’s NOT on the stack.

To Multiply: Pop Twice, Multiply, Push Product

STACKMULT

LDR R1,R6,#0 ; pop 9 into R1
ADD R6,R6,#1 ; remove space

; pop 8 into R0
; remove space

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

x4000
x3FFF
x3FFE
x3FFF
x3FFD

.
.
.

#9
R6→ #8
R6→

ADD R6,R6,#1
LDR R0,R6,#0

We’re ready to
call MULT!

To Multiply: Pop Twice, Multiply, Push Product

STACKMULT

LDR R1,R6,#0 ; pop 9 into R1
ADD R6,R6,#1 ; remove space
LDR R0,R6,#0 ; pop 8 into R0
ADD R6,R6,#1 ; remove space

; R0 is 72

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

x4000
x3FFF
x3FFE
x3FFF
x3FFD

.
.
.

#9
#8

R6→
JSR MULT

Note that the
stack is empty.

1/30/2018

5

To Multiply: Pop Twice, Multiply, Push Product

STACKMULT

LDR R1,R6,#0 ; pop 9 into R1
ADD R6,R6,#1 ; remove space
LDR R0,R6,#0 ; pop 8 into R0
ADD R6,R6,#1 ; remove space
JSR MULT ; R0 is 72

; push R0

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

x4000
x3FFF
x3FFE
x3FFF
x3FFD

.
.
.

#9
#8

R6→ADD R6,R6,#-1

Use the same
instructions as before!

STR R0,R6,#0

#72R6→

That’s it!

Subroutine Can Mean More than Just Adding RET

STACKMULT

LDR R1,R6,#0 ; pop 9 into R1
ADD R6,R6,#1 ; remove space
LDR R0,R6,#0 ; pop 8 into R0
ADD R6,R6,#1 ; remove space
JSR MULT ; R0 is 72
ADD R6,R6,#-1 ; push R0
STR R0,R6,#0

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

RET

But what if
we want a

subroutine?

Good enough? NO!

A Subroutine that Uses JSR or TRAP Must Protect R7

STACKMULT

LDR R1,R6,#0 ; pop 9 into R1
ADD R6,R6,#1 ; remove space
LDR R0,R6,#0 ; pop 8 into R0
ADD R6,R6,#1 ; remove space
JSR MULT ; R0 is 72
ADD R6,R6,#-1 ; push R0
STR R0,R6,#0

RET

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

; R7 has the return address here.

Where does
R7 point

after JSR?

Here.
So RET

creates a
loop…

Add a Space with a Label, then Save and Restore R7

STACKMULT
; save R7

LDR R1,R6,#0 ; pop 9 into R1
ADD R6,R6,#1 ; remove space
LDR R0,R6,#0 ; pop 8 into R0
ADD R6,R6,#1 ; remove space
JSR MULT ; R0 is 72
ADD R6,R6,#-1 ; push R0
STR R0,R6,#0

; restore R7
RET

; space for R7

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

ST R7,SM_R7

LD R7,SM_R7

SM_R7 .BLKW #1

Now the
subroutine is

complete.

1/30/2018

6

Review: the Stack Abstraction

Stack in memory similar to stack on a desk.
Operations include:
◦PUSH—put something

on top of the stack
◦POP—take the top thing off of the stack

A stack
◦provides last-in, first-out (LIFO) semantics:*
◦ first thing popped is the last thing pushed

*As opposed to first-in, first-out (FIFO) semantics,
as with the queue that we used with BFS.

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

Review: the Stack Abstraction in LC-3

In LC-3,
◦we use R6 as a stack pointer, and
◦PUSH/POP require two instructions each

Most ISAs
◦have a stack pointer register and
◦ include PUSH/POP instructions.

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

The Stack at This Level is Not Checked

P&P talk about overflow/underflow checks.
That’s fine when we reach C.
High-level languages (such as C) rely
heavily on the stack provided by the ISA.
The stack provided by the ISA
◦ is typically unchecked,
◦as checking overhead is too high, so
◦don’t make mistakes.

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

What Really Happens with Overflow/Underflow?

If a stack overflows…
◦ in LC-3/embedded processor/inside OS,*

causes silent data corruption;
◦ in desktop/laptop/phone application,

hardware detects, and OS causes
program to crash.

If a stack underflows…
◦ silent data corruption is

likely to happen first, and
◦ program may crash.

*For example, inside your OS in ECE391.

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

1/30/2018

7

What is a Think-Pair-Share?

A group exercise in lecture, not unlike
discussion sections in ECE120.
The process:
1. I give you a problem.
2. You form groups of 3-4 people.
3. Talk about ways to solve the problem.
4. Once enough of the groups have finished,

one group volunteers to share their
answer.

5. We go over the group’s answer together.

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

The Task: a Factorial Subroutine

Write subroutine FACTORIAL
◦ to compute output R0
◦ as the factorial of input R0.
◦ In other words, R0 ← 1 × 2 × … × R0.

Assumptions and rules…
◦ Assume that input R0 is at least 1.
◦ Assume that R6 points to a valid stack.
◦ Write your subroutine in

LC-3 assembly language.
◦ Use the STACKMULT subroutine

to calculate the answer.
◦ Clearly define the calling interface.

slide 26ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved.

A Task on Your Own: 16-bit Palindrome Check

What’s a palindrome?
◦ Same spelling backwards as forwards.
◦ Examples include “Otto” and “Hannah.”

Your task:
◦ Check whether R0 is a palindrome.
◦ Example: 0111 1011 1101 1110.
◦ Return R0=1 if yes, R0=0 if no.

Assumptions and rules…
◦ Assume that R6 points to a valid stack (use it).
◦ Write your code in LC-3 assembly language.

slide 27ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved.

See sample
solution on

the web
page.

We Can Use Known Values on the Stack Directly

In practice, we need not
strictly obey the rules of
the stack abstraction.
Consider the following task:
◦ sum three non-negative
values from top of the stack,

◦pop all three values, and
◦ return the sum in R0.

Let’s assume that only R0 should change.

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

base

R6→

.
.
.

v1
v2
v3

1/30/2018

8

Let’s Start by Saving R1 and Reading v1

SUM_OF_3
ST R1,SAVE_R1 ; save R1
LDR R0,R6,#0 ; R0 ← v1

SAVE_R1 .BLKW #1

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

base

.
.
.

R6→ v1
v2
v3

Make a space
down here.

So far, so good?

But we’re not
going to pop v1…

Load v2 Using LDR from M[R6 + 1]

SUM_OF_3
ST R1,SAVE_R1 ; save R1
LDR R0,R6,#0 ; R0 ← v1
LDR R1,R6,#1 ; R1 ← v2
ADD R0,R0,R1 ; R0 ← v1 + v2

SAVE_R1 .BLKW #1

© 2018 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

base

.
.
.

R6→ v1
v2
v3

Read v2 before popping v1.

And find the sum…

Do the Same for v3 (with Offset 2)

SUM_OF_3
ST R1,SAVE_R1 ; save R1
LDR R0,R6,#0 ; R0 ← v1
LDR R1,R6,#1 ; R1 ← v2
ADD R0,R0,R1 ; R0 ← v1 + v2
LDR R1,R6,#2 ; R1 ← v3
ADD R0,R0,R1 ; R0 ← v1 + v2 + v3

SAVE_R1 .BLKW #1

© 2018 Steven S. Lumetta. All rights reserved. slide 31ECE 220: Computer Systems & Programming

base

.
.
.

R6→ v1
v2
v3

Now read v3. And find the sum…

Pop All Three Values at Once

SUM_OF_3
ST R1,SAVE_R1 ; save R1
LDR R0,R6,#0 ; R0 ← v1
LDR R1,R6,#1 ; R1 ← v2
ADD R0,R0,R1 ; R0 ← v1 + v2
LDR R1,R6,#2 ; R1 ← v3
ADD R0,R0,R1 ; R0 ← v1 + v2 + v3
ADD R6,R6,#3 ; pop all three

SAVE_R1 .BLKW #1

© 2018 Steven S. Lumetta. All rights reserved. slide 32ECE 220: Computer Systems & Programming

base

.
.
.

R6→ v1
v2
v3

Done with the
values: pop all

three!

R6→

1/30/2018

9

Finish by Restoring R1 and Returning

SUM_OF_3
ST R1,SAVE_R1 ; save R1
LDR R0,R6,#0 ; R0 ← v1
LDR R1,R6,#1 ; R1 ← v2
ADD R0,R0,R1 ; R0 ← v1 + v2
LDR R1,R6,#2 ; R1 ← v3
ADD R0,R0,R1 ; R0 ← v1 + v2 + v3
ADD R6,R6,#3 ; pop all three
LD R1,SAVE_R1 ; restore R1
RET
SAVE_R1 .BLKW #1

© 2018 Steven S. Lumetta. All rights reserved. slide 33ECE 220: Computer Systems & Programming

base

.
.
.

v1
v2
v3

Restore R1
and return.

R6→

Breaking the Abstraction Can Be Done Safely

To use SUM_OF_3,
◦push three values, call SUM_OF_3,
and use the result in R0.

◦Or allocate three locations with one ADD,
write in three values, then call …

We can safely use
◦any data on the stack
◦ if we know that it’s there.

© 2018 Steven S. Lumetta. All rights reserved. slide 34ECE 220: Computer Systems & Programming

Can We Generalize SUM_OF_3 to SUM_OF_N?

The picture to the right shows
◦an array of three integers
◦ on top of the stack.

What if we want to generalize?
Can we write a subroutine
◦ that adds a variable
number of non-negative
numbers

◦ from an array on top of the stack?

© 2018 Steven S. Lumetta. All rights reserved. slide 35ECE 220: Computer Systems & Programming

base

R6→

.
.
.

v1
v2
v3

Can We Generalize SUM_OF_3 to SUM_OF_N?

Can we write a subroutine
that adds N non-negative
numbers from the top of
the stack?

Yes!

But the subroutine must
know the value of N.

© 2018 Steven S. Lumetta. All rights reserved. slide 36ECE 220: Computer Systems & Programming

base

R6→

.
.
.

v1

vN

.
.
.

1/30/2018

10

How Can the Subroutine Be Given N?

How can the caller tell the
subroutine the value of N?
Hint: this is NOT a trick question.
Give the easy answers first!
1. Use a fixed value,

such as 3.
2. Pass N in a register,

say R2.

© 2018 Steven S. Lumetta. All rights reserved. slide 37ECE 220: Computer Systems & Programming

base

R6→

.
.
.

v1

vN

.
.
.

The Answers Will Be Useful in Other Contexts

This question occurs in many contexts:
◦determining array length
◦passing variable numbers
of arguments, and

◦using network connections in applications.
Be sure that you understand the options!

© 2018 Steven S. Lumetta. All rights reserved. slide 38ECE 220: Computer Systems & Programming

Another Solution: the ASCII String Approach

How can the caller tell the
subroutine the value of N?
1. Use a fixed value, such as 3.
2. Pass N in a register, say R2.
How do ASCII strings work?
3. End the list with a

non-data sentinel
(such as -1).*

*Now you know why we assumed “non-negative.”

© 2018 Steven S. Lumetta. All rights reserved. slide 39ECE 220: Computer Systems & Programming

base

R6→

.
.
.

v1

vN

.
.
.

-1

Does Putting N at the End of the Array Work?

What if we put N at
the end of the array?

Does such an
approach work?

© 2018 Steven S. Lumetta. All rights reserved. slide 40ECE 220: Computer Systems & Programming

base

R6→

.
.
.

v1

vN

.
.
.

N

1/30/2018

11

Does Putting N at the End of the Array Work?

Given the stack shown here,
what should the
subroutine return?
13? (N=2)
23? (N=4)
Something else? (Is N shown?)
The answer is ambiguous!

(Such an approach is not acceptable.)

© 2018 Steven S. Lumetta. All rights reserved. slide 41ECE 220: Computer Systems & Programming

base

R6→

…

10

8

3
2

4

One Other Solution is Possible

How can the caller tell the
subroutine the value of N?
1. Use a fixed value, such as 3.
2. Pass N in a register, say R2.
3. End the list with a non-data

sentinel (such as -1).
But there is one more answer…
4. Put N on top of the stack

(always in a known position: M[R6]).

© 2018 Steven S. Lumetta. All rights reserved. slide 42ECE 220: Computer Systems & Programming

base

R6→

.
.
.

v1

vN

.
.
.

R6→ N

A Stack for MP3

In MP3,
◦ you will use a stack
◦ to implement a depth-first search (DFS).

Given
◦a list of extra events,
◦ each with several options for hour slot,
◦ you must try to find a combination
◦ that works without schedule conflicts.

© 2018 Steven S. Lumetta. All rights reserved. slide 43ECE 220: Computer Systems & Programming

A Stack Frame Holds All Information for a Subroutine

Imagine that you are using
◦an ISA with few/no registers, so
◦ you must use the stack
to manage subroutine calls.

Let’s define a block of data
◦ called a stack frame
(or activation record)

◦ that holds all of the information
◦needed for one subroutine.

© 2018 Steven S. Lumetta. All rights reserved. slide 44ECE 220: Computer Systems & Programming

1/30/2018

12

A Stack Frame Holds All Information for a Subroutine

What needs to be in a stack frame?
Local variables
Address of caller’s stack frame
Return address (R7 in LC-3)
Outputs (return value)
Inputs (parameters, arguments)
You’ll grow quite tired of these by March.

© 2018 Steven S. Lumetta. All rights reserved. slide 45ECE 220: Computer Systems & Programming

these form
the linkage

