University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems & Programming

Privilege, Traps, Interrupts, and Libraries

ECE 220: Computer Systems & Programming

© 2018 Steven S. Lumetta. All rights reserved.

slide 1

Hardware Devices Usually Not Robust to Errors

Hardware devices often assume proper use of their protocols.

If software makes errors,

- the hardware may stop working...
- · ...or worse.

"Here's your laptop.

Something really funny happened.

I wrote BRz instead of BRnz ...

...and the hard drive melted."

ECE 220: Computer Systems & Programming

 $\ensuremath{\mathbb{C}}$ 2018 Steven S. Lumetta. All rights reserved.

slide 2

OS Protects Hardware and Other Users/Programs

To reduce problems, one can restrict software access to I/O registers.

Other forms of protection are also useful:

- between users, and
- between unrelated programs.

Enforcing such protection is usually the domain of the operating system (OS).

ECE 220: Computer Systems & Programming

 $\ensuremath{\mathbb{C}}$ 2018 Steven S. Lumetta. All rights reserved.

slide 3

Many ISAs Provide Privilege to Support OS Protection

Hardware supports OS with privilege.

Code executes either

- oprivileged (can do anything), or
- not privileged (must rely on the OS).

LC-3 uses a bit in the **Processor Status**

Register (PSR, not mentioned previously):

- 0 means privileged
- 1 means unprivileged

(That's all we'll say about LC-3 privilege.)

ECE 220: Computer Systems & Programming

 $\ensuremath{\mathbb{C}}$ 2018 Steven S. Lumetta. All rights reserved.

OS Services are Implemented as Subroutines

How does the OS provide services for user (unprivileged) programs?

Using subroutines! (Also known as traps or system calls.)

Remember TRAP? RTL for TRAP is...

 $R7 \leftarrow PC, PC \leftarrow M[ZEXT16(vec8)]$

The first part is the same as JSR, and LC-3 traps end with RET (JMP R7).

ECE 220: Computer Systems & Programming

© 2018 Steven S. Lumetta. All rights reserved.

slide 5

Trap Vector Table Contains Starting Addresses of Traps

In the LC-3,

- Memory locations **x0000-x00FF** are called the **trap vector table**.
- (Vector is another word for pointer, or memory address.)
- Each entry in the table contains the starting address for one system call.
- Each system call ends with RET.

Note: You can look at the code for the LC-3 system calls in lc3sim.

ECE 220: Computer Systems & Programming

 $\mathbb O$ 2018 Steven S. Lumetta. All rights reserved.

slide 6

Code for the OUT Trap For example, OUT is TRAP x21. R1 saved to In M[x0021], we find x0450. prevent changes Listing x0450 gives the following... TRAP_OUT ST R1.TOUT R1 TRAP_OUT_WAIT LDI R1,OS_DSR wait for BRzp TRAP_OUT_WAIT display STI R0,OS_DDR write DDR LD R1,TOUT_R1 restore R1 slide 7 ECE 220: Computer Systems & Programming © 2018 Steven S. Lumetta. All rights reserved.

How Fast are Humans?

Let's change the topic.

How many cycles pass between keystrokes when a human types?

Let's say a good typist.

Answer:*

- 100 milliseconds, so
- probably 10s of millions of cycles.
 - * "Good" means 100 words per minute, or 10 characters per second.

ECE 220: Computer Systems & Programming

 ${\mathbb C}$ 2018 Steven S. Lumetta. All rights reserved.

To Wait or Not To Wait, That is the Question!

While the processor waits, should it...

- continuously **poll** the KBSR
- (load its value to check for a key)?
- check KBSR every so often?

What if there's other work to do?

How often should the processor poll?

What if, instead, we **interrupt** the processor's other work when a key is pressed?

ECE 220: Computer Systems & Programming

© 2018 Steven S. Lumetta. All rights reserved

slide 9

Interrupts Avoid the Need for Polling

Interrupts allow asynchronous interactions.

When a device needs attention

- (such as when a key is pressed),
- \circ the device raises an interrupt, and
- the processor immediately* executes an interrupt handler.

What's an interrupt handler? A subroutine!

*Generally after finishing the current instruction.

ECE 220: Computer Systems & Programming

 $\ensuremath{\mathbb{C}}$ 2018 Steven S. Lumetta. All rights reserved.

slide 10

Interrupts Require Special Handling of Processor State

The code being executed

- \circ when the interrupt is raised
- does not expect the interrupt to occur.

Therefore, all state must be saved:

- all registers (even R7) are callee-saved, and
- · condition codes must also be saved.

ISAs other than LC-3 may have additional state.

ECE 220: Computer Systems & Programming

© 2018 Steven S. Lumetta. All rights reserved.

slide 11

Restoring State Requires New Instructions (RTI)

When an interrupt handler finishes,

- $^{\circ}\,\textsc{processor}$ state must be restored.
- \circ Otherwise, interrupted code must
- assume that state can change • between any two instructions!
- Restoring state completely
- ${}^{\circ}\!$ requires special instructions.
- ° LC-3 provides RTI (return from interrupt).

ECE 220: Computer Systems & Programming

 ${\mathbb C}$ 2018 Steven S. Lumetta. All rights reserved.

Can You Do Calculations?

I need your help again.

But ... let me check your background first.

Without a calculator, how many of you can ...

- do long division?
- calculate a square root?
- calculate transcendental and hypertranscendental functions (sin, cos, tanh, Γ, ...)?
- use a library to find out?

(The last skill is important!)

ECE 220: Computer Systems & Programming

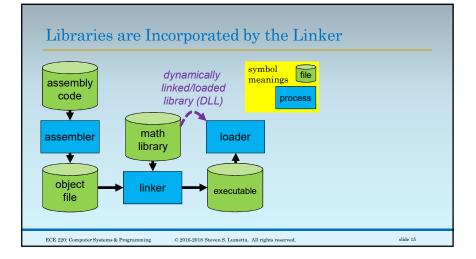
© 2018 Steven S. Lumetta. All rights reserved.

slide 13

What is a Library?

In programming, a **library** is...

- o a body of subroutines for common tasks
- typically written in advance
- by someone else, and
- incorporated into a program by a linker.


Examples from C include...

- the standard I/O library
- the math library

ECE 220: Computer Systems & Programming

 $\ensuremath{\mathbb{C}}$ 2018 Steven S. Lumetta. All rights reserved.

slide 14

System Calls / Traps are a Library, Too

But the system calls provided by an OS are also a body of subroutines...

System Calls/Traps are (usually)

- a set of library routines
- usually executed with privilege*
- preloaded into the computer (sometimes in ROM, as with BIOS)
- accessed indirectly (by number, not address)

*But not in the LC-3 ISA.

ECE 220: Computer Systems & Programming

 ${\mathbb C}$ 2018 Steven S. Lumetta. All rights reserved.

Anything Can be Solved with Another Level of Indirection

In LC-3, the trap vector table translates trap number to starting address.

What's the advantage of indirection?

Changes to the OS do not require changes to applications.

- OS services can be modified and upgraded independently.
- New services can be added.

ECE 220: Computer Systems & Programming

© 2018 Steven S. Lumetta. All rights reserved.