University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems \&
 Programming

Review: Letter Frequency Coding

ECE 220: Computer Systems \& Programming
© 2016 -2018 Steven S. Lumetta. All rights reserved.
slide 1
1

Review the Problem to Be Solved

The task:
${ }^{\circ}$ given an ASCII string (terminated by NUL)

- count the occurrences of each letter
(regardless of case), and
- the number of non-alphabetic characters.

The high-level approach:
initialize histogram to all 0 s
for each character in the string
increment the appropriate histogram bin

ECE 220: Computer Systems \& Programming © 2016 Steven S. Lumetta. All rights reserved.

What Shall We Keep in the Registers?

For the counting part, we will
use registers as follows
R0 histogram pointer (HIST)
R1 string pointer (moves)
R2 current character from string
R3, R4, R5 ASCII constants (to be chosen)
R6 temporary

ECE 220: Computer Systems \& Programming © 2016 -2018 Steven S. Lumetta. All rights reserved.

We Also Need to Fill the Histogram with 0s

The next step: fill the histogram with 0s.
We need registers.
Let's reuse a few (so far, only R0 is initialized).

R1 a loop counter (27 iterations)
R2 current histogram bin to fill
R6 the number 0 (to store)

ECE 220: Computer Systems \& Programming © 2016 Steven S. Lumetta. All rights reserved.

Prepare Our Registers to Initialize the Histogram
.ORIG x3000
LEA R0,HIST
AND R6,R6,\#0

```
To set R 6 to 0 , use an AND.
```


Now, we need to initialize R6 to 0, R1 to \#27, and R2 to HIST.

Prepare Our Registers to Initialize the Histogram
.ORIG x3000
LEA R0,HIST
AND R6,R6,\#0
LD R1,NUM_BINS

Let's just store \#27
 somewhere and

 use an LD.NUM_BINS .FILL \#27
(just before .END)

ECE 220: Computer Systems \& Programming © 2016 -2018 Steven S. Lumetta. All rights reserved.

Prepare Our Registers to Initialize the Histogram

We're Ready to Fill the Histogram with 0s

.ORIG x3000
LEA R0,HIST
AND R6,R6,\#0
LD R1,NUM_BINS
ADD R2,R0,\#0
And what about R2?

ECE 220: Computer Systems \& Programming
© 2016 -2018 Steven S. Lumetta. All rights reserved.
slide 9

Remember our register contents:
R1 a loop counter (27 iterations)
R2 current histogram bin to fill
R6 the number 0 (to store)
In our loop body, we write one 0 (from R6) to a
bin at the memory location pointed to by R2.
Then we point to the next bin (increment R2).
Then we decrement our loop counter (R1).
Finally, we loop until the counter reaches 0 .

ECE 220: Computer Systems \& Programming © 2016 Steven S. Lumetta. All rights reserved.

Fill One Histogram Bin with 0

.ORIG x3000
LEA R0,HIST
AND R6,R6,\#0
LD R1,NUM_BINS
ADD R2,R0,\#0
HFLOOP ; (hist fill loop)
STR R6,R2,\#0

> Write one 0 (from R6) to the histogram bin to which R2 points.

> Is there an LC-3 instruction for that?

Point to the Next Histogram Bin

.ORIG x3000
 LEA R0,HIST

AND R6,R6,\#0

Point R2 to the next bin.

LD R1,NUM_BINS
ADD R2,R0,\#0
HFLOOP ; (hist fill loop)
STR R6,R2,\#0
ADD R2,R2,\#1
Is there an LC-3
instruction for that?

ECE 220: Computer Systems \& Programming © 2016 .2018 Steven S. Lumetta. All rights reserved.
side 12

Decrement the Loop Counter	
.ORIG x3000 Decrement the LEA R0,HIST loop counter. AND R6,R6,\#0 LD R1,NUM_BINS ADD R2,R0,\#0 HFLOOP; (hist fill loop) STR R6,R2,\#0 Is there an LC-3 ADD R2,R2,\#1 instruction for that? ADD R1,R1,\#-1	
ECE 220: Computer Systems \& Programming \quad © 2016 -2018 Steven S. Lumetta. All rights reserved.	slide 13

Branch Backward Until We Finish Filling the Histogram
.ORIG x3000
LEA R0,HIST
AND R6,R6,\#0

Branch backward until we have written 27 bins.

ADD

HFLOOP ; (hist fill loop)	
STR R6,R2,\#0	
ADD R2,R2,\#1	
ADD R1,R1,\#-1	
BRp HFLOOP	
instruction for that?	

We Still Have Initialization Work to Do
What about these other registers?
R1 string pointer (moves)
R2 current character from string
R3, R4, R5 ASCII constants (to be chosen)
R6 temporary

Let's initialize them now. (No need to initialize R2 nor R6.)

Initialize the Remaining Registers with LD
LD R3,NEG_AT
LD R4,AT_MIN_Z
LD R5,AT_MIN_BQ
LD R1,STR_START
(and just before .END)
NEG_AT .FILL xFFC0 AT_MIN_Z .FILL xFFE6 AT_MIN_BQ.FILL xFFE0 STR_START .FILL STRING

Initialize the other registers using LD.

Note use of label STRING as a FILL value.

If We Find a NUL, We are Done

COUNTLOOP		
LDR R2,R1,\#0	Check for	
BRz DONE		

Subtract @ to Compare with Capital A

Remember the ASCII table?


```
NUL ...@ @ A `..
```

Subtracting '@' allows us to check for non-alphabetic characters in the left region.
We store the difference (original character minus '@') back in R2, so A through Z become 1 through 26.

ECE 220: Computer Systems \& Programming © 2016 Steven S. Lumetta. All rights reserved.
slide 22

Subtract @ to Compare with Capital A
COUNTLOOP
LDR R2,R1,\#0
BRz DONE
ADD R2,R2,R3

```
Compare with capital A.
```


Add R3 (-'@') to R2
 and write the sum back into R2.

Branch Unless We Have a Character in the Left Region
COUNTLOOP
LDR R2,R1,\#0
BRz DONE
ADD R2,R2,R3
BRp AT_LEAST_A

Branch forward if the character is not in the left non-alphabetic

 region.What is the branch condition?

Time to Increment the Non-Alpha Histogram Bin

\section*{| $\mathbf{x} 00$ | $\mathbf{x 4 0}$ | x 41 | x 5 A | x 5 B | x 60 | x 61 | x 7 A | x 7 B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| x 7 F | | | | | | | | |
 NUL ${ }^{\text {... @ A }}$... Z}

If the result is not positive,

- the character is in the left region and
- is not a letter.

So we can increment the non-alpha bin (at HIST).

Increment Memory Location x3100 (Non-Alpha Bin)

COUNTLOOP
LDR R2,R1,\#0
BRz DONE
ADD R2,R2,R3
BRp AT_LEAST_A
NON_ALPHA
LDR R6,R0,\#0

Increment memory at HIST (the value held in RO).

Is there an LC-3 instruction for that?

ECE 220: Computer Systems \& Programming © 2016 -2018 Steven S S Lumetta. All rights reserved.

Increment Memory Location x3100 (Non-Alpha Bin)
COUNTLOOP LDR R2,R1,\#0 BRz DONE ADD R2,R2,R3 BRp AT_LEAST_A NON_ALPHA LDR R6,R0,\#0 ADD R6,R6,\#1

Increment Memory Location x3100 (Non-Alpha Bin)

COUNTLOOP

LDR R2,R1,\#0
BRz DONE
ADD R2,R2,R3
BRp AT_LEAST_A
NON_ALPHA
LDR R6,R0,\#0
ADD R6,R6,\#1
STR R6,R0,\#0

> Increment memory at HIST (the value held in RO).

And put the new

 value back.

Go to the End of the Loop

We are done counting this character.

ADD R2,R2,R3
BRp AT_LEAST_A
NON_ALPHA
LDR R6,R0,\#0 ADD R6,R6,\#1 STR R6,R0,\#0 BRnzp GET_NEXT

Branch (always) to the end of our loop (make up a name for it!).

We Need to Check for a Capital Letter

Subtract Z to Make the Next Comparison
Next, we compare with capital Z.

This time, we want to subtract ' Z '.
But we already subtracted '@', so now we add '@' - 'Z' (let's keep this value in R4).
We discard the result (store the result in R6).

ECE 220: Computer Systems \& Programming \quad © 2016 Steven S. Lumetta. All rights reserved.

Branch Unless We Have a Capital Letter
AT_LEAST_A
ADD R6,R2,R4
BRp MORE_THAN_Z
Branch forward if the character is not a capital letter.

```
What is the branch condition?
```

Remember: we just calculated (original character - 'Z')

ECE 220: Computer Systems \& Programming © 2016 -2018 Steven S S Lumetta. All rights reserved.
slide 34

Increment One Letter's Histogram Bin
Time to Increment the One Letter's Histogram Bin

If the result is not positive,
the character is a capital letter.
What bin should we increment?
(Hint: R2 now holds 1 to 26 for A to Z.)
The bin at address HIST + R2.

AT_LEAST_A
ADD R6,R2,R4
BRp MORE_THAN_Z
ALPHA
ADD R2,R2,R0
Where can we put
the bin pointer?
We only need R2 to find the right bin.

ECE 220: Computer Systems \& Programming © 2016 -2018 Steven S. Lumetta. All rights reserved.

Increment One Letter's Histogram Bin

AT_LEAST_A
ADD R6,R2,R4
BRp MORE_THAN_Z
ALPHA
ADD R2,R2,R0
LDR R6,R2,\#0
ADD R6,R6,\#1

```
Increment memory at address
pointed to by R2.
```

And now increment the value.

ECE 220: Computer Systems \& Programming © 2016 -2018 Steven S. Lumetta. All rights reserved.
slide 38

We Are Done with That Character
As before, we are done with that character. So now we need to point to the next character...

ECE 220: Computer Systems \& Programming © 2016 Steven S. Lumetta. All rights reserved.
side 40

Subtract x60 to Make the Next Comparison

We want to subtract $\mathbf{x} 60$ (backquote, '"').
But we already subtracted '@' from R2, so now add '@' - '" (let's keep this value in R5)

Let's write the result back to R2 so that lower case letters produce values 1 to 26 in R2.

Add (@ - `) to Compare with Lower Case a

MORE_THAN_Z
ADD R2,R2,R5

Compare with lower case a.

Add R5 ('@' - "')
to R2 and write the
sum back to R2.

When Do We Have a Character in the Middle Region?

We just wrote (original character minus $\times 60$) into $R 2$.
Under what conditions ($\mathrm{N}, \mathrm{Z}, \mathrm{P}$) do we have a character in the middle region?

N and Z

ECE 220: Computer Systems \& Programming
O2016 Steven S. Lumetta. All rights reserved
slide 45

How Can We Increment the Non-Alpha Bin?

So for conditions \mathbf{N} or \mathbf{Z}, we want to increment the non-alpha bin.

How?

Didn't we already write that code?
Let's just branch to it!

ECE 220: Computer Systems \& Programming O 2016 Steven S. Lumetta. All rights reserved

We Need to Check for a Lower Case Letter

Next, we compare with lower case z.
ADD R2,R2R5 BRnz NON_ALPHA

Handle characters in the middle region.

So what is the branch condition?

Remember the label that we created earlier (for incrementing the non-alpha bin)?

ECE 220: Computer Systems \& Programming © 2016 Steven S. Lumetta. All rights reserved.
slide 48

Subtract z to Make the Next Comparison

Add (-z) to Compare with Lower Case z

MORE_THAN_Z
ADD R2,R2,R5

Compare with

BRnz NON_ALPHA
ADD R6,R2,R4
This time, we want to subtract ' z '.
But we already subtracted ' ${ }^{\prime \prime}$, so now we add
Add R4 ('' - 'z') to R2 and write the sum into R6.

When Do We Have a Lower Case Letter?
How Can We Increment the Right Letter's Bin?

We just wrote (original character minus 'z')
So for conditions \mathbf{N} or \mathbf{Z}, we want to increment one of the letter's histogram bins.

How?

Didn't we already write that code?
Let's just branch to it!

ECE 220: Computer Systems \& Programming
$\bigcirc 2016$ Steven S. Lumetta. All rights reserved.

How Can We Increment the Right Letter's Bin?

Let's be clear:

- We are able to reuse the code because we designed the code to be reusable.
- In both cases, R0 points to the histogram, and $\mathbf{R} 2$ is 1 to 26 for the letter.

Branch If We Have a Lower Case Letter

```
MORE_THAN_Z
```

ADD R2,R2,R5
BRnz NON_ALPHA

Handle lower case letters.

ADD R6,R2,R4
BRnz ALPHA
What is the
branch condition?

We created a second label for incrementing a letter's bin.

ECE 220: Computer Systems \& Programming
2016-2018 Steven S. Lumetta. All rightsend
slide 54

We Know that the Character is Not a Letter

Branch to the Code for Non-Alphabetic Characters

At this point, we know that the original character was not a letter.
So ... ?

Branch (unconditionally) to the code that increments the non-alpha histogram bin.

MORE_THAN_Z ADD R2,R2,R5 BRnz NON_ALPHA ADD R6,R2,R4
BRnz ALPHA
BRnzp NON_ALPHA

Handle the last region.

$$
\begin{aligned}
& \text { Again, just use } \\
& \text { the label created } \\
& \text { earlier. }
\end{aligned}
$$

