




slide 7

Algorithm 1: Look Through String Once for Each Letter

© 2016 Steven S. Lumetta. All rights reserved.

Maybe something like this?

ECE 220: Computer Systems & Programming

for each letter (and once for non-letters)
count = 0
for each character in the string
 if character matches letter (either case)
 count = count + 1
store count for the letter in histogram

Another Example: a Book Second example: the Patt and Patel textbook. How many A's? 61,341 How many B's? 10,821 How many C's? Do you really think How many D's? I counted these? How many E's? Would you approach the problem differently with a longer string?

Algorithm 2: Look through String Once	Algorithm 3: Build a Bigger Histogram
For a longer string, maybe we just want to look through it once?	What if we build a bigger histogram first: initialize 128-bin histogram to all 0s for each character in the string
initialize 27-bin histogram to all 0s for each character in the string increment the appropriate histogram bin	increment bin for that character for each letter add the two corresponding bins sum all non-letter bins
But figuring out which bin to increment may be complicated.	Now finding the bin is easy, but we need extra memory and computation.
ECE 220: Computer Systems & Programming © 2016 Steven S. Lumetta. All rights reserved. slide 9	ECE 220: Computer Systems & Programming © 2016 Steven S. Lumetta. All rights reserved. slide 10

slide 11

Which Algorithm is Best?

Which approach is better?

What is the metric?

- Number of instructions executed?
- Number of clock cycles (time) required?
- Amount of memory needed?

Does our answer depend on the length of the string?

What if the string is sorted alphabetically?

ECE 220: Computer Systems & Programming © 2016 Steven S. Lumetta. All rights reserved.

Let's Pick Algorithm 2 The answer depends on the context and the application of our program. We're going to go with Algorithm 2: initialize 27-bin histogram to all 0s

for each character in the string increment the appropriate histogram bin

Why? Implementing the complex decision in the middle will be interesting.

ECE 220: Computer Systems & Programming © 2016 Steven S. Lumetta. All rights reserved.

slide 12