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How Does One Write a Program?

You have seen several 
examples of programming.

Given a task in human terms,
◦we produce an algorithm
◦ that solves the problem
◦using steps that each require a few
LC-3 instructions (or C statements). 

How did we do it?
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Systematic Decomposition: What is It?

Systematic decomposition is an approach 
to programming.  The idea is as follows:
◦ starting with a high-level model of 
the task, usually in a human language,

◦ repeatedly break the task
into simpler tasks

◦until each subtask is easily 
expressed in a few instructions.
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We Will Discuss Three Constructs

We will discuss
◦ the pieces (the structure of “simpler tasks”)
◦and how each maps to LC-3 memory.

But before we start, a couple of 
comments on programming…
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Don’t Underestimate the Value of Having a Model

Pencil and paper are your first tools.

If your algorithm is clear in your head,
◦when your code has bugs,
◦you will find it easier to spot the differences
◦between what you meant to write
◦and what you wrote.

Draw pictures, draw flow charts, think.

Then sit down to write the code.
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Write Comments First

When you do get ready to write your program:

First, write comments that describe
tasks at intermediate levels.

Then fill in the code for each comment.

Don’t leave comments as an afterthought.
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Break Down Tasks Using One of Three Constructs

What do “simpler tasks” look like?

Typically, they form one of three patterns.

You have seen these patterns before:
◦ they correspond to statements in C, 
◦but the iterative construct is simpler.

Let’s take a look.
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First Pattern: the Sequential Construct

A sequential decomposition
breaks the task
◦ into two or more 
subtasks

◦ executed 
in sequence.
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Second Pattern: the Conditional Construct

A conditional decomposition executes one of 
two subtasks based on a test condition.
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Repeat Refinement to Allow More Than Two Possibilities

What if we want more than two possibilities?

Break a subtask into subtasks again!
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else
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Third Pattern: the Iterative Construct

An iterative decomposition repeats a 
subtask so long as a test condition is true.
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How Can We Map Flow Charts into Memory?

Flow charts are pretty.

But one can’t draw a flow chart in memory.

How can we turn a flow chart 
into a sequence of instructions?

Let’s examine each construct in turn.
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Sequential is Easy: No Need for Control Flow
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Conditional Construct Mapped to Memory
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Iterative Construct Mapped to Memory
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Systematic Decomposition is Not Systematic

Is systematic decomposition 
really “systematic?”

The term “systematic: suggests that 
◦ one can apply a set of rules 
◦without making complex decisions.

Generally, such is not the case
◦when breaking tasks down.
◦Otherwise, computers could program for us!
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Learning to Program Takes Time and Experience

Usually
◦you will have many choices,
◦many of which will produce algorithms.

Some algorithms
◦are better than others
◦ (even for all reasonable senses of “better”).

Don’t worry too much.

Learning to program well takes time.
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