
1/16/2018

1

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 220: Computer Systems &
Programming

Review: Systematic Decomposition

ECE 220: Computer Systems & Programming © 2016-2018 Steven S. Lumetta. All rights reserved. slide 1

How Does One Write a Program?

You have seen several
examples of programming.

Given a task in human terms,
◦we produce an algorithm
◦ that solves the problem
◦using steps that each require a few
LC-3 instructions (or C statements).

How did we do it?

© 2016 Steven S. Lumetta. All rights reserved. slide 2ECE 220: Computer Systems & Programming

Systematic Decomposition: What is It?

Systematic decomposition is an approach
to programming. The idea is as follows:
◦ starting with a high-level model of
the task, usually in a human language,

◦ repeatedly break the task
into simpler tasks

◦until each subtask is easily
expressed in a few instructions.

© 2016 Steven S. Lumetta. All rights reserved. slide 3ECE 220: Computer Systems & Programming

We Will Discuss Three Constructs

We will discuss
◦ the pieces (the structure of “simpler tasks”)
◦and how each maps to LC-3 memory.

But before we start, a couple of
comments on programming…

© 2016 Steven S. Lumetta. All rights reserved. slide 4ECE 220: Computer Systems & Programming

1/16/2018

2

Don’t Underestimate the Value of Having a Model

Pencil and paper are your first tools.

If your algorithm is clear in your head,
◦when your code has bugs,
◦you will find it easier to spot the differences
◦between what you meant to write
◦and what you wrote.

Draw pictures, draw flow charts, think.

Then sit down to write the code.

© 2016 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Write Comments First

When you do get ready to write your program:

First, write comments that describe
tasks at intermediate levels.

Then fill in the code for each comment.

Don’t leave comments as an afterthought.

© 2016 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Break Down Tasks Using One of Three Constructs

What do “simpler tasks” look like?

Typically, they form one of three patterns.

You have seen these patterns before:
◦ they correspond to statements in C,
◦but the iterative construct is simpler.

Let’s take a look.

© 2016 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

First Pattern: the Sequential Construct

A sequential decomposition
breaks the task
◦ into two or more
subtasks

◦ executed
in sequence.

© 2016 Steven S. Lumetta. All rights reserved. slide 8

task

first
subtask

second
subtask

third
subtask

ECE 220: Computer Systems & Programming

1/16/2018

3

Second Pattern: the Conditional Construct

A conditional decomposition executes one of
two subtasks based on a test condition.

© 2016 Steven S. Lumetta. All rights reserved. slide 9

task
then

subtask
else

subtask

test
condition

TRUE FALSE

ECE 220: Computer Systems & Programming

Repeat Refinement to Allow More Than Two Possibilities

What if we want more than two possibilities?

Break a subtask into subtasks again!

© 2016 Steven S. Lumetta. All rights reserved. slide 10

“1 is true”
subtask

else
subtask

test
condition

1

TRUE FALSE

“2 is true”
subtask

“both false”
subtask

test
condition

2

TRUE FALSE

ECE 220: Computer Systems & Programming

Third Pattern: the Iterative Construct

An iterative decomposition repeats a
subtask so long as a test condition is true.

© 2016 Steven S. Lumetta. All rights reserved. slide 11

task

subtask

test
condition

TRUE

FALSE

ECE 220: Computer Systems & Programming

How Can We Map Flow Charts into Memory?

Flow charts are pretty.

But one can’t draw a flow chart in memory.

How can we turn a flow chart
into a sequence of instructions?

Let’s examine each construct in turn.

© 2016 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

1/16/2018

4

Sequential is Easy: No Need for Control Flow

© 2016 Steven S. Lumetta. All rights reserved. slide 13

memory

first subtask’s
instructions

second subtask’s
instructions

third subtask’s
instructions

first
subtask

second
subtask

third
subtask

ECE 220: Computer Systems & Programming

Conditional Construct Mapped to Memory

© 2016 Steven S. Lumetta. All rights reserved. slide 14

then
subtask

else
subtask

test
condition

TRUE FALSE

memory
instructions to
generate test

then subtask
instructions

else subtask
instructions

branch on
FALSE

0000 111

0000 nzp

ECE 220: Computer Systems & Programming

Iterative Construct Mapped to Memory

© 2016 Steven S. Lumetta. All rights reserved. slide 15

memory
instructions to
generate test

subtask
instructions

branch on
FALSE

0000 111

0000 nzp

subtask

test
condition

TRUE

FALSE

ECE 220: Computer Systems & Programming

Systematic Decomposition is Not Systematic

Is systematic decomposition
really “systematic?”

The term “systematic: suggests that
◦ one can apply a set of rules
◦without making complex decisions.

Generally, such is not the case
◦when breaking tasks down.
◦Otherwise, computers could program for us!

© 2016 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

1/16/2018

5

Learning to Program Takes Time and Experience

Usually
◦you will have many choices,
◦many of which will produce algorithms.

Some algorithms
◦are better than others
◦ (even for all reasonable senses of “better”).

Don’t worry too much.

Learning to program well takes time.

© 2016 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

