

Lend Me Your Brains for a Minute?

> I had a busy break.

I need to ask your help.

Can you help me sort these numbers?

$$
\begin{array}{ccc}
\text { "41,962" "41321" "9874" } \\
\text { biggest middle smallest }
\end{array}
$$

ECE 220: Computer Systems \& Programming © 2016 Steven S. Lumetta. All rights reserved.

A Side-by-Side Comparison of the Numbers

Let's compare them side by side.

Oh, so " 9874 " is the biggest!
Please be more careful when you help me!

ECE 220: Computer Systems \& Programming © \quad 2016 Steven S. Lumetta. All rights reserved.

A Side-by-Side Comparison of the Numbers

What's the next largest?

41,962	Compare these two.
41321	

9874
" 4 " is equal to " 4 ."
Comma (x2C)
" 1 " is equal to " 1 ."
is smaller than '3' (x33).
Ah , so " 41321 " is the middle value. Good.

So the Computer is Right?

It seems that the computer is right.
At least, for some definition of "right."
This type of answer is what you get if you sort strings in ASCII order (instead of numerical order).

	"41,962" "41321" "9874"		
humans	biggest	middle	smallest
computers	smallest	middle	biggest

ECE 220: Computer Systems \& Programming © 2016 -2018 Steven S. Lumetta. All rights reserved.

Remember: Computers are Dumb

Think it's just a silly example?
Take a look at the index of Patt and Patel.
Should "EXTERNAL" come before "Equality?"
"ASCII" before "Address?"
Computers do exactly what they are told.

Another Example: Adding Strings

Here's a software representation for a string of text (the string is " 19 ").
The address of the first ASCII character in memory, x4012, is used to represent the string
To "read" the string,
$x 4012 \times 0031$ ' 1 '
$\times 4 0 1 3 \longdiv { x 0 0 3 9 }$ '9'
$\times 4014 \times 0000$ NUL

- look at consecutive memory locations
${ }^{\circ}$ until we find a 0 (an ASCII NUL character),
${ }^{\circ}$ which indicates the end of the string.

ECE 220: Computer Systems \& Programming © 2016 Steven S. Lumetta. All rights reserved.

Can We Add Two Strings?				
Here's another string	$\times 4012$	x0031	'1'	
What is it? "23"	$\times 4013$	x0039	'9'	
Say that the LC-3 executes:	$\times 4014$	x0000	NUL	
R1 $\leftarrow \times 4012$	$\times 7196$	x0032	'2'	
$\begin{aligned} & \mathrm{R} 2 \leftarrow \mathrm{x} 7196 \\ & \mathrm{R} 2 \div \mathrm{R} 1+\mathrm{R} 2 \end{aligned}$	$\times 7197$	x0033	'3'	
What is R3? xB1A8	X7198	x0000	NUL	
What is stored at xB1A8? Bits!				
ECE 220: Computer Systems \& Programming	-2016 Steven S. Lumeta. All rights reserved.			slide 9

You Understand Why Adding Addresses Doesn't "Work"

Obviously, if we want to add two strings that represent numbers, we need to do more work.
People who have never seen representations
using bits often cannot understand such failures.
Almost every bug you write will seem this dumb when you find it.
I've seen bugs take months.
People don't like to talk about them afterward.

ECE 220: Computer Systems \& Programming
22016.2018 Steven S. Lumetta

