
Page 9 Name: __

Problem 5 (20 points): The LC-3 Instruction Set

Parts A and B refer to the LC-3 code below (execution starts at x3000 and ends when the
HALT trap is decoded).

Part A (4 points): How are the contents of registers and the memory locations shown
above modified by the code when it runs? Specify the final value stored at each memory
location and register changed by the code.

Part B (4 points): You also need to figure out how long this program takes to execute.
Knowing that the majority of the time spent will be on memory accesses, you decide to
count the number of memory accesses to estimate the time.

How many times does LC-3 need to access memory to execute this snippet of code (until
decode of the TRAP)? Justify your answer.

Address Contents Instruction
x3000 1110 000000000101 LEA R0, #5

x3001 0110 010000000001 LDR R2, R0, #1

x3002 0111 010000000000 STR R2, R0, #0

x3003 1010 011000000001 LDI R3, #1

x3004 1111 000000100101 TRAP x25 (HALT)

x3005 0011 000000001000 not executed

x3006 1011 101010101101 not executed

x3007 0110 000000001100 not executed

x3008 0011 010101101010 not executed

Page 10 Name: __

*** Part D (4 points): Explain what the code below does. A description that requires
more than a few words is a good hint that you have the wrong idea. Hint: R0 and R1 are
positive inputs, and R5 is the output.

Address Data Instruction

x3000 0101 010000100000 AND R2, R0, #0

x3001 0001 101010100001 ADD R5, R2, #1

x3002 0001 011000100000 ADD R3, R0, #0

x3003 0001 010010000101 ADD R2, R2, R5

x3004 0001 011011111111 ADD R3, R3, #-1

x3005 0000 001111111101 BRp #-3

x3006 0001 101010100000 ADD R5, R2, #0

x3007 0101 010010100000 AND R2, R2, #0

x3008 0001 001001111111 ADD R1, R1, #-1

x3009 0000 001111111000 BRp #-8

x300A 1111 000000100101 TRAP x25

Name: __ 2

Problem 1 (20 points): Short Answers

Please answer concisely. If you find yourself writing more than a few words or a simple drawing, your
answer is probably wrong.

Part C (5 points): Using one or more LC-3 instructions, implement a branch if positive (BRp) to an
address outside the range of the branch instruction. Assume that the address to which you want to branch is
stored in R5. Write your instruction(s) in binary. Note: you may not need all the lines provided below.

Address Instruction
x3000: ______________________________

x3001: ______________________________

x3002: ______________________________

x3003: ______________________________

S18-honors:
write assembly code,
not bits --SL

Page 2 Name: __

Problem 1 (40 points): Short Answer

Part A. Rewrite the following LC-3 code replacing the use of the direct and register-offset
addressing modes with the indirect address mode. Provide your answer in the box.

LD R0, LOC
LDR R1, R0, #0
ADD R1, R1, #1
STR R1, R0, #0
HALT

LOC .FILL x7654

Part D. If we never bothered to check the ready bit when writing to the Display Data Register, what
is the likely outcome?

Page 3 Name: __

Part G. Consider the following code snippet to multiply R0 by R1 using repeated addition
(assuming both are positive values). The product is kept in R2. How many instructions are
executed when this program is run? Provide your answer in terms of the values of R0 and R1.

AND R2, R2, #0
LOOP ADD R2, R2, R1

ADD R0, R0, #-1
BRp LOOP

Part H. Consider two 16-bit 2’s complement numbers A and B. What does it indicate if the
expression NOT(A + NOT(B)) equals zero? Hint: recall that NOT(B) + 1 = -B.

Page 4 Name: __

Problem 2 (20 points): LC-3 Assembly Programming

In this problem, you will help complete an LC-3 assembly program to remove all spaces in a
character string. For example, if you are given a string “HelloWorld!”, the program will
convert the string to “HelloWorld!”. Here, “” indicates the space character (ASCII 32). The
string is terminated by a NULL character (ASCII 0) and is stored in memory at the memory location
indicated by the symbol STRING.

The Algorithm works as follows: We will keep two memory addresses to track the string. One is
called “Current Read” address, which is stored in R0. The other is called “Current Write” address,
which is stored in R1. In the beginning, both R0 and R1 will contain the starting address of the
string. R4 will contain the value -32, which we will use in our comparison tests to check for the
space character.

At each iteration, we read the string at the “Current Read” location and test for the space character.
If the character is a space, we only need to advance the “Current Read”. If the character is not a
space, we write the character to the “Current Write” location, and advance both the “Current Read”
and “Current Write” locations. We then test for the end of the string. If the character is a NULL, we
are done. If it is not, we start another iteration.

Part A (15 points): Complete the program by filling in the missing information.

 .ORIG x3000
 LEA R0, STRING ; R0 contains “Current Read” location
 ADD R1, R0, #0 ; R1 contains “Current Write” location
 ___ R4, SPACE ; R4 contains -32 (minus ASCII for space)

NEXT LDR R2, R0, #0 ; R2 contains current character
 ADD R3, R2, R4 ; R3 is a temporary value
 BR__ NOTSPACE
 ADD R0, R0, ___ ; We have a space
 BR NEXT

NOTSPACE STR ___, R1, ___ ; Write to “Current Write” location

ADD ___, R0, #1
ADD R1, R1, #1

 _____________ ; Test for end of string
 BR__ NEXT

DONE HALT

SPACE .FILL #32
STRING .STRINGZ “ECE 190 !”
 .END

Page 6 Name: __

Problem (20 points): LC-3 Assembly

In this problem you will create an LC-3 Assembly Language program to add two 32-bit unsigned
numbers. The input values are provided in locations x5000—x5003, and the results are to be placed
in locations x5004 and x5005 as indicated below.

x5000 Input A[15:0]
x5001 Input A[31:16]
x5002 Input B[15:0]
x5003 Input B[31:16]
x5004 Output S[15:0]
x5005 Output S[31:16]

The algorithm for this addition is very straightforward:

S[15:0] = A[15:0] + B[15:0];
S[31:15] = A[31:16] + B[31:16] + Carry[16];

The tricky part of the code involves generating Carry[16], the carry out from the addition of the
lower 16 bits that is the carry into the addition for the upper 16 bits. Below is a code template:

.ORIG x3000
; Load input data

; Calculate S[15:0] = A[15:0] + B[15:0]

; Calculate S[31:16] = A[31:16] + B[31:16]

; Correct S[31:16] = S[31:16] + Carry[16]

; Store results to Output locations

HALT ; Stop program execution
POINTER .FILL x5000 ; Pointer to input data

Part A (5 points) Write code to Load the input data from memory. You may use the contents the
location POINTER to help you. (Should be 5 instructions)

Page 7 Name: __

Part B (1 point): Write the code for generating S[15:0] and S[31:16] in the Calculate blocks in the
template. (Should be 2 instructions)

Part C (4 point): Fill in the truth table for S[15] below as a first step to understanding how to write
the code for generating Carry[16]. Carry[16] is the carry used for generating S[16].

Carry[15] A[15] B[15] S[15] Carry[16]
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Part D (8 points): For this portion, provide the instruction to Correct S[31:16] by adding in the
Carry[16]. (Hint: rework the solution for Part C. Should be less than 15 lines)

Part E (1 point): Store the result into the desired memory locations. (Should be 2 or 3 lines).

Name: __ 8

Problem 4 (20 points): From C to LC-3 and Back Again

Part A (10 points): translate the C function below to LC-3 assembly instructions. The diagram of the
stack frame for the function call has been provided for you.

Translate the while and return statements
from the function body independently, with no
register values shared between sections. The
stack frame management and register save/store
has been done for you (not shown in figures).

char* find_char
(char* str, char a)
{
 char* strcpy = str;

 while(*strcpy != a){
 strcpy++;
 }
 return strcpy;
}

; create stack frame and save registers
…
; char* strcpy = str;
; DO NOT WRITE IN THIS BOX

; translation for
; return i;

; translation for while loop
;while(*strcpy != a) {
; strcpy++;
; }

; restore registers and tear down stack frame
…
; DO NOT WRITE IN THIS BOX

strcpy

prev. frame pointer
return address
return value

str

a

 stack frame for
 find_char

R6,R5

Name: __ 9

Problem 4, continued:

Given below is part of the LC-3 translation of a C function foo and part of the function foo itself. Also
given is the stack frame (activation record) for foo. Remember that memory addresses increase in the
direction of the arrow. Answer the questions below.

int foo (int a)
{
 int ans = 0;
 int i;
 for (i = a; 0 < i; i--) {

 /* body of loop written
 * by you in Part B
 */
 }
 return ans;
}

Part B (6 points): Which LC-3 instructions correspond to (give the instruction numbers shown in the
comments):

a. The initialization of the for loop?

b. The test part of the for loop?

c. The update (re-initialization) of the for loop?

Part C (4 points): Using the LC-3 translation of foo, write the body of the for loop here.

.
 .
 .
 AND R0, R0, #0 ;1
 STR R0, R5, #0 ;2
 LDR R0, R5, #4 ;3
 STR R0, R5, #-1 ;4
LOOP
 LDR R0, R5, #-1 ;5
 BRnz DONE ;6
 LDR R0, R5, #-1 ;7
 LDR R1, R5, #0 ;8
 ADD R1, R1, R0 ;9
 STR R1, R5, #0 ;10
 LDR R0, R5, #-1 ;11
 ADD R0, R0, #-1 ;12
 STR R0, R5, #-1 ;13
 BRnzp LOOP ;14

DONE
 LDR R0, R5, #0 ;15
 STR R0, R5, #3 ;16
 .
 .
 .

i

 ans

prev. frame pointer
return address
return value

a

stack frame for foo

R6

R5

Page 2 Name: __

Problem 1 (20 points): Short Answer

Part A (5 points): Suppose an I/O event (e.g., a keystroke) occurs infrequently, and at
irregularly distributed times. Would a polled or interrupt-driven approach to processing
the event be a better design choice? Give two reasons why the approach that you chose is
the better one.

Part B (5 points): A certain C function bar()accepts a variable number of non-
negative parameters/arguments of type int. Explain two ways to design bar() so that
the callee can determine the actual number of parameters passed.

Page 3 Name: __

Problem 1, continued

Part C (5 points): What is wrong with the following function?

int* sum_of_int (int x, int y)
{
 int sum = x + y;
 return ∑
}

Part D (5 points): Complete the output from the program fragments below.

int x = 0;
int i = 4;
for (i = 0; 10 > i; i++) {
 i++;
 x++;
}
printf ("x: %d\ni: %d\n", x, i);

Output:
x: __________

i: __________

int x = 0;
int i = 4;
while (10 > i)
{
 if (3 < x) { break; }
 x++;
 i++;
}
printf ("x: %d\ni: %d\n", x, i);

Output:
x: __________

i: __________

Page 5 Name: __

Problem 3 (20 points): Assembly Programming using Subroutines

You are given a vending machine filled with four different types of sodas. The vending
machine behaves like a stack: when you buy a drink, it is “popped” off the stack and
given to you. Unfortunately, you cannot open the machine, so the only way to remove
the sodas is to “pop” them off, and the only way to put sodas back in the machine is to
“push” them in. Your job is to inventory the sodas, restore the machine to its initial state,
and then print out the total number of each soda.

You are provided with 2 stacks. One stack is a representation of the soda dispenser
(Stack 1), and the other stack is empty (Stack 2). The stack pointer for Stack 1 is R6, and
the stack pointer for Stack 2 is R5. Stack 1 (the soda dispenser) has an arbitrary number
of sodas in it. Each of the four types of drinks is represented on the stack by a unique
value.

Type of Soda Encoded Value
 Coke x0039
Pepsi x0001
Sprite x0000

Mountain Dew x002A

You are provided with the following subroutines:

PUSH1 and PUSH2
Description Pushes the value in R0 onto Stack 1 (PUSH1) or Stack 2 (PUSH2)
Input R0 (the value to be pushed)

Success: R0 contains 0 Returns
Failure: R0 contains -1 (the stack is full)

POP1 and POP2
Description Pops a value off the stack into R0 (POP1 for Stack 1; POP2 for Stack 2)
Input None

Success: R0 contains popped value Returns
Failure: R0 contains -1 (the stack is empty)

ADD_BIN
Description Adds the drink to a histogram stored at memory location x4000
Input R0 contains the encoded value of the drink to add
Returns Nothing
PRINT_HIST
Description Prints out the histogram created by ADD_BIN
Input None
Returns Nothing

Sprite (x0000)

Pepsi (x0001)

Coke (x0039)

Dew (x002A)

Coke (x0039)

R6

Example of Stack 1

Page 6 Name: __

Problem 3, continued

Part A (6 points): Again, your job is to inventory the sodas in Stack 1, restore the
machine to its initial state, and then print out the total number of each soda. Complete
the systematic decomposition below by writing the name of one of the subroutines
provided to you in each box of the flowchart below.

You may assume that neither PUSH1 nor PUSH2 ever fails.

BEGIN

Failure

Success

Failure

DONE

Success

Page 7 Name: __

Problem 3, continued

Part B (8 points): Using the subroutines provided, write LC-3 assembly code for the task
assigned to you: again, count the number of each type of soda on Stack 1, restore Stack 1
to its initial state, and print out the total number of each type of soda. Note that

• you may assume that neither PUSH1 nor PUSH2 ever fails,
• you may not access the stacks using their stack pointers directly,
• you may assume that registers R0, R1, R2, R3, and R4 are callee saved, and that

R5 and R6 are only affected as specified by the subroutine semantics,
• you may make no other assumptions about any subroutine’s implementation,
• you do not need to include .ORIG, HALT, or .END, and
• if you write more than fifteen or twenty lines, you’re doing it wrong.

Page 8 Name: __

Problem 3, continued

Part C (6 points): Write the subroutine PRINT_HIST, which prints out the data stored in
the histogram (the total number of each type of drink) located at memory locations x4000
to x4003. You may use TRAP x26 to print out decimal numbers; note that the version
given to you also prints a line feed after the number. You may use R0 through R3
without saving them for this part; other register values must be preserved.

Example output for PRINT_HIST:
0
4
3
1

TRAP x26
Description Prints R0 to the screen as a decimal number followed by a linefeed
Input R0 contains decimal number to be printed
Returns Nothing

Page 9 Name: __

Problem 4 (20 points): LC-3 and C

Part A (6 points): Explain why a compiler that does not make use of library subroutines
requires more LC-3 instructions to implement the statement below on the left than the
statement below on the right. The variable i is an int.

i = (i >> 1); i = (i << 1);

Page 10 Name: __

Problem 5 (20 points): C Programming

 0 int foo (int x, int y) {
 1 int z, val = x;
 2
 3 if (0 > x || 0 > y) {
 4 return -1;
 5 }
 6
 7 if (x > y) {
 8 z = x / y;
 9 val = x – y * z;
10 }
11 return val;
12 }

Most parts of this problem pertain to the C function shown above. The line numbers are
only for reference and are not part of the program.

Part A (3 points): What is the return value of foo (10,3) ? ________
Part B (3 points): What is the return value of foo (452,500) ? ________
Part C (4 points): Using no multiplication operators, fill in a simple C expression below
such that we can replace lines 7 through 10 of the function with the statement below
without affecting the results returned from the function.

val = ______________________________ ;

Part D (5 points): List the five types of information typically stored in a C function’s
stack frame (also called an activation record in the textbook)?

Part E (5 points): How many LC-3 memory locations does the stack frame for function
foo() require? Assume that each int occupies one memory location. Justify your
answer.

Name: __ 2

Problem 1 (20 points): Short Answers

Please answer concisely. If your answer requires more than a few words or a simple figure, it is probably
wrong.

Part A (5 points): Consider the following C function.

int mystery ()
{
 int x = 1;
 int y = 10;

 do {
 y = y + x;
 if (4 < x) {
 break;
 }
 x = x * 2;
 } while (20 > y);
 printf ("%d\n", y); /* A(i) refers to this line. */
 return x; /* A(ii) refers to this line. */
}

i) What number does the call to printf in the mystery function output to the display?

ii) What value does the mystery function return?

Part B (5 points): Consider the C code snippet below.

int a = 10;
int b = 5;
int c = 10;

c = (a++) + (--b) + c;

Write the values of the three variables after all of the assignments have completed.

a ___________ b ___________ c ___________

Name: __ 3

Part D (5 points): Most functions require a specific number of arguments. A few, such as scanf, take a
variable number of arguments. In the C declaration below, the ellipsis (“…”) following the first argument
indicates that a variable number of additional arguments can be passed.

void variable_args (int num_args, ...);

For the variable_args function, the num_args argument indicates the number of additional
arguments. For example, the call variable_args (2, 4, 5) indicates that two additional
arguments (4 and 5) are being passed.

When a compiler generates assembly code for a call to the variable_args function, should the
num_args argument be pushed first or last (or does it not matter, if all compilers are required make the
same choice)? Explain your answer.

Name: __ 4

Problem 2 (15 points): Assemblers and Assembly Language

This exam you are now taking was written by a program outputting the text to the console and redirecting
that to a text file (think of comparisons you made for MP2). The first function we wrote was HEADER,
which is shown below. There are no typographical errors in the code.

.ORIG x3000
MAIN LEA R1,TABLE

JSR HEADER
LEA R0,NICE
HALT

NICE .STRINGZ "Good Luck!"

HEADER ST R7,TEMP
LDR R0,R1,#0
BRz DONE
ADD R1,R1,#1
PUTS
LD R0,LINEFEED
OUT
BRnzp HEADER

DONE LD R7,TEMP
RET

TEMP .BLKW #1
LINEFEED .FILL x0A
TABLE .FILL FIRST ; address of first string

.FILL SECOND ; address of second string

.FILL x0000
FIRST .STRINGZ "ECE 190"
SECOND .STRINGZ "Midterm 2"

.END

Part B (7 points): Show the output of the program and describe the program’s behavior.

Name: __ 5

Problem 3 (25 points): Stacks and Subroutines

This problem pertains to the LC-3 assembly program shown on the left below.

 .ORIG x3000
 LEA R6,STACK
 LEA R1,STRING

 ADD R2,R1,#1
 R6
PART1 LDR R0,R1,#0
 BRz PART2
 ADD R6,R6,#-1
 STR R0,R6,#0
 ADD R1,R1,#2
 BRnzp PART1

PART2 LDR R0,R6,#0
 ADD R6,R6,#1
 OUT
 LDR R0,R2,#0
 OUT
 ADD R2,R2,#2
 LDR R0,R2,#-1
 BRnp PART2
 STACK
 HALT
MESSAGE .STRINGZ "SOOGTALUTARINNC!"
 .BLKW #20
STACK
 .END

Part A (7 points): Assuming that an LC-3 processor has executed the program until it first reaches the
instruction at PART2, fill in the contents of the stack diagram on the right above with one ASCII character
per location. Any location not changed by the program must be left blank. Note the position of the
STACK label, and draw an arrow from R6 in the diagram to the memory location to which it currently
points.

Part B (5 points): Write the output of the program.

Part C (6 points): The string provided in the program above has a length of 16 ASCII characters (not
counting NUL). For what string lengths does this program do something predictable?

Name: __ 6

Problem 3, continued:

Part D (5 points): Add necessary instructions before and after the main portion of the program to turn it
into an assembly subroutine (not a C subroutine—you do NOT need to create a stack frame/activation
record).

R1 holds the address of a string of appropriate length when the subroutine is called, and R6 points to a
stack with plenty of space left on top.

Your subroutine may not change the value of ANY register (except R7); R0, R1, R2, R3, R4, R5, and R6
must be returned with their original values at the end of your subroutine.

***(2 points): For full credit on this problem, add only instructions in your code (no new directives such
as .BLKW, no .FILL, no .STRINGZ, etc.).

STRINGSUB
; you may add code here

 ADD R2,R1,#1 ; this code was copied from previous page

PART1 LDR R0,R1,#0
 BRz PART2
 ADD R6,R6,#-1
 STR R0,R6,#0
 ADD R1,R1,#2
 BRnzp PART1

PART2 LDR R0,R6,#0
 ADD R6,R6,#1
 OUT
 LDR R0,R2,#0
 OUT
 ADD R2,R2,#2
 LDR R0,R2,#-1
 BRnp PART2

; you may also add code here

Name: __ 7

Problem 4 (20 points): I/O and Systematic Decomposition

While working at a summer internship, your boss informs you that the company has just bought several
LC-3 machines. Your company is working on a top-secret defense contract, and you are charged with
writing the password entry subroutine. As you might expect, the public version of the LC-3 operating
system cannot be used on a secure machine, so your code must interact directly with the devices.

The display registers on your machines behave identically to a standard LC-3 platform: DSR[15] indicates
that the display is ready to receive a new ASCII character; when the display is ready, writing an ASCII
character to DDR[7:0] delivers it to the monitor.

The keyboard registers are similar, but have been extended with a fingerprint scanner. KBSR now returns
one of the following bit patterns (only bits 15 and 3 are defined; others may hold any value):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 x x x x x x x x x x x 0 x x x no key, no fingerprint

0 x x x x x x x x x x x 1 x x x impossible

1 x x x x x x x x x x x 0 x x x keystroke—read KBDR

1 x x x x x x x x x x x 1 x x x fingerprint match

When a key is ready, the 8-bit ASCII code can be read from KBDR[7:0]. No additional data is available
when a fingerprint match is indicated by KBSR, thus KBDR holds no meaningful bits in that case.

For confidentiality reasons, every time the user types a password character, an asterisk (‘*’) must be echoed
to the monitor in place of the character actually typed, while the character typed must be recorded in
memory for later processing. After typing their password, a user swipes their finger over the scanner and,
if authorized to use the machine, produces a fingerprint match response from KBSR.

Part A (10 points): Complete the systematic decomposition of the password entry routine on the next
page by drawing missing arrows and filling in the boxes with brief labels in English and the symbolic
names listed below.

KBSR KBDR DSR DDR

READY — the ready condition (as read from either KBSR or DSR)
FINGER — the fingerprint match flag (as read from KBSR)

CHAR — a character read from the keyboard
PASSPTR — the address of the first location in a block of memory into which you must store the

password characters
ASTER — a register holding the ASCII character ‘*’

Note that labels in the form of LC-3 instructions earn no credit.

Name: __ 8

Problem 4, continued:

Part A answer diagram

NO

YES

START

YES

DONE

store CHAR
to PASSPTR

read KBSR

YES

Name: __ 9

Problem 4, continued:

Part B (10 points): Now write an LC-3 assembly subroutine to implement your password entry routine.

Some specifics for your subroutine:
• Device register addresses constants are provided for your use.
• R2 is an input to your subroutine and holds the address of the first location in the block of memory

into which you must store the password characters (PASSPTR in Part A).
• R3 is loaded for you with an asterisk (ASTER in Part A).
• You may use any register that you like for the character read from KBDR (CHAR in Part A),

reading the device registers, and so forth.
• You need not preserve any register values for this subroutine (all registers are caller-saved).

• You may NOT add other constants or space for storage.

PASS_ENTER
LD R3,ASTERISK
; your code goes here

RET
ASTERISK .FILL x002A
KBSR .FILL xFE00
KBDR .FILL xFE02
DSR .FILL xFE04
DDR .FILL xFE06

Name: __ 10

Problem 5 (20 points): C to LC-3

Consider the following C function.

int a;

int a_function (int arg)
{
 int x;
 int y;

 x = arg - 1;
 y = (x << 3);
 if (10 > y) {
 y = a + 20;
 }
 return y;
}

Remember that in the LC-3 calling convention, C programs use R4 to point to the beginning (base) address
of the global data section, R5 to point to the stack frame/activation record, and R6 to point to the top of the
stack.

Part A (2 points): For the code above, fill the blank spaces in the partial symbol table shown below.

Identifier Type Offset Scope
a int 2 global
x int 0 a_function
y int -1 a_function

arg int

Part B (6 points): Based on the symbol table, mark the locations of a, x, y and arg in the global data
section diagram on the left and the stack frame diagram on the right below. Do not mark other boxes.

previous frame ptr
return address
return value

R4

R5

R6

Name: __ 11

Part C (12 points): Fill in these five boxes with LC-3 assembly code for each of the statements listed at
the top of the column. Write each section independently of the others: your code may not rely on registers
loaded in a previous section (other than R4 and R5), and must update variables appropriately rather than
leaving results in registers. You may overwrite the values in R0 and R1 in your code for this problem.

x = arg - 1; y = (x << 3);

if (10 > y) – branch if FALSE to NOPE y = a + 20;

return y;
NOPE ; branch target for if test failure (above left)

Page 3 Name: __

Problem 2 (25 points): Analyzing C programs

Part A (5 points): Provide the output generated by the following program

int main()
{
 int ii;
 int jj;

 for (ii = 0; ii < 5; ii++)
 {
 for (jj = ii; jj < 5; jj++)
 printf("*");
 printf("\n");
 }
}

Output:

Line 1:

Line 2:

Line 3:

Line 4:

Line 5:

Line 6:

Line 7:

Line 8:

Line 9:

Page 4 Name: __

Part B (5 points): Provide the output generated by the following program.

int main()
{
 int ii;
 int jj;

 for (ii = 1; ii != 64; ii = ii * 2)
 {
 jj = 1;
 while (ii > jj)
 {
 if (!(ii % jj))
 printf("*");
 jj = jj << 1;
 }
 printf("\n");
 }
}

Output:

Line 1:

Line 2:

Line 3:

Line 4:

Line 5:

Line 6:

Line 7:

Line 8:

Line 9:

Page 5 Name: __

Part C (5 points): Provide the output generated by the following program.

int main()
{
 char cc;
 char dd;
 char ee;

 cc = '2';
 dd = '3';

 ee = cc + dd;

 printf("%c\n", ee);
}

Output:

Part D (5 points): Provide the output generated by the following program.

int main()
{
 int ii;
 int jj;

 /* The following declaration includes an initializer that

initalizes the array list to the indicated values. After
the initialization, list[0] = 8, list[1] = 2, etc.. */

 int list[10] = { 8, 2, 3, 1, 7, 4, 0, 6, 9, 5 };
 int pre[10];

 for (ii = 0; ii < 10; ii++)
 {
 pre[ii] = 0;
 for (jj = 0; jj < ii; jj++)
 pre[ii] = pre[ii] + list[jj];
 }

 for (ii = 0; ii < 10; ii++)
 printf("%d ", pre[ii]);
 printf("\n");
}

Output:

Page 6 Name: __

Problem 3 (45 points): Understanding functions in C

Shown below is a simple C program. In Parts A and B of this problem, you will fill in values for the run-time
stack as the code below executes. Parts C through F deal with the LC-3 code generated for functions main and
foo. For this problem, you may assume that the LC-3 compiler treats ints as 16-bit data types. Also, you
cannot rely on any prewritten subroutines – you must provide all required code.

int main()
{

int x = 4;
int y = 9;
int z = 16;

x = foo(y, z);

}

int foo(int a, int b)
{
 int x, y;

 y = 20;
 x = bar(a, y);

 return 1;
}

int bar(int a, int b)
{
 int z = 7;

 return 10;
}

Page 7 Name: __

Part A (20 points): The table below contains a snapshot of the LC-3 run-time stack during execution of the given
C code. Provide the values of the run-time stack just after the last instruction in the function bar executes.
Provide exact values when possible (use UNKNOWN if you don’t know an exact value). Hint: You might need
to use information from Parts C through F to determine some addresses. To start you off, part of the activation
record for main has been provided. In the column labeled “Field”, indicate the purpose of the stack entry by
denoting one of the following:

(A) Local variable (B) Argument (C) Dynamic link (D) Return value (E) Return address

Address Memory Values Field
xFD05
xFD06
xFD07
xFD08
xFD09
xFD0A
xFD0B
xFD0C
xFD0D
xFD0E
xFD0F
xFD10
xFD11
xFD12
xFD13
xFD14
xFD15
xFD16 16 (A) Local variable z in main
xFD17 9 (A) Local variable y in main
xFD18 4 (A) Local variable x in main

Part B (5 points): What are the values of R5, R6, and R7 at the same point in execution as Part A.

R5 =

R6 =

R7 =

Page 8 Name: __

Shown below are the LC-3 subroutines for the C functions main, foo and bar. Some of the assembly code has
been omitted. For parts C through F you will write the assembly code needed to set up and tear down the
activation record for foo. In your code, use only R0 as a temporary register. No need to worry about stack
overflow or underflow.

Part C (5 points): Write the LC-3 code in main that corresponds to the call to foo in the table below.

Part D (5 points): Write a sequence of assembly instruction to POP information off the run-time stack after foo
has returned in the table below.

 ; function main
x3000 :
 ; Initial code for main
 :
 ; Provide Code for Part C here

x3020 JSR FOO ; Jumps to x3050
 ; Code for Part D starts here

 :
 ; Ending code for main
 :
 RET

Page 9 Name: __

Part E (5 points): In the table below, write the sequence of LC-3 instructions that are executed upon entry into
the function foo that prepare foo’s activation record.

Part F (5 points): In the table below, write the LC-3 code that corresponds to the return statement in foo.

 ; Function foo
x3050 ; Provide code for part E here

 :
 ; Code for call to BAR
 :
x3060 JSR BAR ; Jump to x3071
 :
 ; Code for return from BAR
 :
 ; Provide code for Part F here

x3070 RET
 ; Function bar
X3071

Name: 3

Problem 1, continued:

Part D (5 points): Assume that an LC-3 processor’s R4 (register #4) holds the value 0. Without
making any other assumptions, what is the minimum number of LC-3 instructions necessary to change R4’s
value to 16. Explain your answer.

Name: 10

Problem 5 (20 points): LC-3 Instructions

Part A (3 points): Given an ST (store) instruction at address x5000, what is the smallest memory
address that the store can change? What is the largest?

Part B (4 points): Consider the following code snippet (RTL on the right):

ADD R2, R1, R0 ; R2 ← R1 + R0

ADD R2, R2, #1 ; R2 ← R2 + 1

BRz #10 ; if Z: PC ← PC + 10

If the branch is taken (i.e., if the PC changes due to the branch), what do you know about the relationship
between R0 and R1? (An equation will not earn full credit.)

Name: 2

Problem 1 (20 points): Short Answers

Please answer concisely. If you find yourself writing more than a few words or a simple drawing, your answer is
probably wrong.

Part A (5 points): Consider the following C function:

void /* returns nothing */
func (int x)
{

switch ((5 < x) - (3 > x)) {
case -1:

printf ("Too cold\n");
break;

case 1:
printf ("Too hot\n");
break;

case 0:
printf ("Just right\n");
break;

default:
printf ("Weird weather!\n");
break;

}

}

Fill in the blanks below to re-implement the function using if statements.

void /* returns nothing */
func (int x)
{

if () {
printf ("Too cold\n");

} else if () {
printf ("Too hot\n");

} else if () {
printf ("Just right\n");

} else {
printf ("Weird weather!\n");

}

}

Name: 4

Problem 2 (20 points): Systematic Decomposition to LC-3 Assembly

1 if printer is online
1 if printer is ready

15 014 13

unusedPSR xFE80

PDR xFE82
15 0

unused

8 7

char to print

wait for
printer

send one
character

update
variables

initialize
variables

save
registers

START

restore
registers

DONE

eight
chars
done?

R0 = temporary values
R1 = count of characters
 sent already
R3 = pointer to next
 character to send

register variables for trap routine

loop over characters

Y

N

Prof. Lumetta needs your help: a new printer device has been added to the LC-3, but he has not been able to write one
of the trap routines, and the next ECE190 assignment requires that trap routine! The trap routine in question sends
a sequence of eight characters stored in memory starting at R3 (an input value) to the printer. Before sending each
character to the printer, the trap routine must wait until both the online and ready bits of the PSR are equal to 1. The
character can then be written to PDR.

The figure above shows three things: on the left, a partial systematic decomposition for the trap routine (partial
because it requires more than one LC-3 instruction for each box); in the upper right, the addresses and pictures of the
new Printer Status Register (PSR) and Printer Data Register (PDR); in the lower right, the mapping from registers to
data values that you’ll need to use in the trap routine.

Part A (5 points): First protect the registers. The trap should preserve all register values. Fill in the code and
allocate storage as necessary below to accomplish this goal. Two data values have been provided for Parts B and C.
; save registers (FILL IN)

; initialize variables and loop over characters (Part C)

; restore registers (FILL IN)

RET ; DONE

; data needed for trap routine (FILL IN)

TRAP PSR .FILL xFE80

TRAP PDR .FILL xFE82

Name: 5

Problem 2, continued:

Part B (5 points): The next step is to decompose the “wait for printer” box to the level of individual LC-3
instructions. Before sending a character to the printer, the trap routine must wait until both the online and ready bits
of the PSR are equal to 1. Draw your answer as a flow chart with RTL or assembly inside each statement or test.
For example, you might label a test with “BR” and write N, Z, and P on the appropriate output arcs. Use the register
mapping shown in the figure (replicated below). Use data values from Part A (you should not need any others).

1 if printer is online
1 if printer is ready

15 014 13

unusedPSR xFE80

PDR xFE82
15 0

unused

8 7

char to print

wait for
printer

send one
character

update
variables

initialize
variables

save
registers

START

restore
registers

DONE

eight
chars
done?

R0 = temporary values
R1 = count of characters
 sent already
R3 = pointer to next
 character to send

register variables for trap routine

loop over characters

Y

N

Name: 6

Problem 2, continued:

Part C (8 points): You are now ready to write the main body of the code. Do so below. Remember that R3
initially points to the first of the eight characters to be sent, and that the others are in consecutive memory locations.

; save registers (Part A; NO NEED TO REWRITE)

; initialize variables (FILL IN; SEE REGISTER MAP FOR CONTENTS)

; all characters done? (FILL IN)

; wait for printer (FILL IN from Part B)

; send one character (FILL IN)

; update variables (FILL IN)

; restore registers, DONE, and data (Part A; NO NEED TO REWRITE)

Part D*** (2 points): The printer has a button that turns it online/offline under human control. Using the protocol
described, the printer must buffer one character even if the character is sent to PDR when the printer is offline. Explain
why this buffering is necessary for correct behavior even though your code checks for the online bit before writing to
PDR.

Name: __ 9

Problem 4, continued:

Given below is part of the LC-3 translation of a C function foo and part of the function foo itself. Also
given is the stack frame (activation record) for foo. Remember that memory addresses increase in the
direction of the arrow. Answer the questions below.

int foo (int a)
{
 int ans = 0;
 int i;
 for (i = a; 0 < i; i--) {

 /* body of loop written
 * by you in Part B
 */
 }
 return ans;
}

Part B (6 points): Which LC-3 instructions correspond to (give the instruction numbers shown in the
comments):

a. The initialization of the for loop?

b. The test part of the for loop?

c. The update (re-initialization) of the for loop?

Part C (4 points): Using the LC-3 translation of foo, write the body of the for loop here.

.
 .
 .
 AND R0, R0, #0 ;1
 STR R0, R5, #0 ;2
 LDR R0, R5, #4 ;3
 STR R0, R5, #-1 ;4
LOOP
 LDR R0, R5, #-1 ;5
 BRnz DONE ;6
 LDR R0, R5, #-1 ;7
 LDR R1, R5, #0 ;8
 ADD R1, R1, R0 ;9
 STR R1, R5, #0 ;10
 LDR R0, R5, #-1 ;11
 ADD R0, R0, #-1 ;12
 STR R0, R5, #-1 ;13
 BRnzp LOOP ;14

DONE
 LDR R0, R5, #0 ;15
 STR R0, R5, #3 ;16
 .
 .
 .

i

 ans

prev. frame pointer
return address
return value

a

stack frame for foo

R6

R5

Name: 10

Problem 5 (20 points): C and Stack Frames

This question focuses on the program below, and particularly on the stack frames (also called activation records) that
are used by each function in the program.

#include <stdio.h>

/* function declarations */
int bar (int a, int b);
int foo (int* p);

int bar (int a, int b)
{

int x = a + b;

if (0 < a) {
printf ("%d\n", a * b);

}

return x;
}

int foo (int* p)
{

*p = bar (-4, 11);
return 6;

}

int main ()
{

int x = 0;
int y;

y = foo (&x);
bar (x, y);
return 0;

}

Part A (3 points): When someone runs the program, what is the order of subroutine calls for the program, starting
from main? In other words, what is the sequence of JSR target over the whole program execution? Give a comma-
separated list, including only the main, foo, and bar functions.

main,

Part B (3 points): What, if anything, is printed by the program?

Name: 11

Problem 5, continued:

Part C (14 points): The stack frame for the main function is shown below. During execution of main, the stack
pointer R6=xBFEF, and the frame pointer R5=xBFF0.

Use the figure to draw the stack just after completion of the return statement in the bar function when it is called
from main, i.e., just before bar’s stack frame is torn down and the subroutine returns to main.

Draw arrows to indicate the values of R6 and R5 at the point of program execution just described. For each memory
location included in the stack (i.e., between the stack pointer and the bottom of the figure), label the location with the
type of information and the value stored there. If a memory location’s value cannot be known, put a question mark
by the description, e.g., “x=?”.

Do not mark or label any locations above the stack pointer, even if you know the values in those locations!

The address of the JSR bar instruction in main is x3040.

return value = _______________

return address =

prev. frame ptr =

local var x = ________________

local var y = ________________

xBFF3

xBFF2

xBFF1

xBFF0

xBFEF

xBFEE

lin
ka

ge

m
ai

n’
s

st
ac

k
fr

am
e

(n
o

pa
ra

m
et

er
s)

xBFED

xBFEC

xBFEB

xBFEA

xBFE9

xBFE8

xBFE7

xBFE6

xBFE5

xBFF7

x4322

R6

R5

Name: __ 2

Problem 1 (18 points): Short Answers

Please answer concisely. If your answer requires more than a few words or a simple figure, it is probably
wrong. Assume in all cases that necessary header files have been included.

Part B (4 points): The following line appears in an LC-3 assembly program:

.FILL x41

What could this fill value represent (circle one answer)?

a) the ASCII character for 'A'

b) the unsigned integer 65

c) the signed integer 65

d) all of the above (that is, it could be any of (a) through (c))

e) none of the above, this is a HEX number

Name: __ 11

Problem 6 (20 points): LC-3 to C

One of your TAs got excited about your MP5 and decided to extend it to support while loops in C. The
questions on the next page refer to the code below, which was generated for a while loop using this
extended version. The variable num is local to main’s stack frame (R5) with offset 0. num is initialized
(before the code shown) to the value 0. Recall that R6 is the stack pointer.

LBL2 ; Piece 1
LDR R0,R5,#0
ADD R6,R6,#-1
STR R0,R6,#0

;---------------------------------
LD R0,LBL3 ; Piece 2
ADD R6,R6,#-1
STR R0,R6,#0
BRnzp LBL4

LBL3
.FILL #10

LBL4
;-------------------------------

LDR R1,R6,#0 ; Piece 3
ADD R6,R6,#1
LDR R0,R6,#0
ADD R6,R6,#1
AND R2,R2,#0
NOT R1,R1
ADD R1,R1,#1
ADD R0,R0,R1
BRzp LBL5
ADD R2,R2,#1

LBL5
ADD R6,R6,#-1
STR R2,R6,#0

;--------------------------------
LDR R0,R6,#0 ; Piece 4
ADD R6,R6,#1
ADD R0,R0,#0
BRnp LBL7
LD R3,LBL6
JMP R3

LBL6
.FILL LBL1

LBL7
;--------------------------------

ADD R0,R5,#0 ; Piece 5
LDR R1,R0,#0
ADD R2,R1,#1
STR R2,R0,#0
ADD R6,R6,#-1
STR R1,R6,#0
ADD R6,R6,#1

;---------------------------------
LD R3,LBL8 ; Piece 6
JMP R3

LBL8
.FILL LBL2

LBL1

WARNING: I did not
solve this problem, so
I'm not sure that it
corresponds to C that
you have learned yet.
--SL

Name: __ 12

Problem 6, continued:

Part A (2 points): What does the code section labeled “Piece 1” do?

Part B (3 points): What does the code section labeled “Piece 2” do?

Part C (6 points): Write a single C expression that corresponds to the code sections 1 through 3.

Part D (4 points): Write a single C statement that corresponds to the code section labeled “Piece 5.”

Part E (5 points): Write the C code corresponding to the LC-3 assembly code shown on the previous
page (using a few lines).

WARNING: I did not
solve this problem, so
I'm not sure that it
corresponds to C that
you have learned yet.
--SL

Page 2

Problem 1 (25 points): C Operators and Loops

Read the following C function.
void func (int num)
{
 int i;
 while (1 < num) {
 for (i = 2; num > i; i++) {
 if (num == i * (num / i)) {
 break;
 }
 }
 printf ("%d,", i);
 num = num / i;
 }
}

Circle EXACTLY ONE ANSWER for each question.

(5 points): What is printed by the function call func (-42)?

A) “4,2,” B) func has a C) “-1,2,3,7,” D) nothing E) “2,4,6,8,10,”
 syntax error

(5 points): What is printed by the function call func (42)?

A) func has a B) “4,2,” C) “2,3,7,” D) “2,4,6,8,10,” E) “42,”
 syntax error

(5 points): What is printed by the function call func (200)?

A) “2,4,6,8,10,12,” B) nothing C) func has a D) “2,0,0,” E) “2,2,2,5,5,”
 syntax error

(5 points) One of the loops below is slightly different from the rest. Circle EXACTLY ONE ANSWER to
indicate which loop is DIFFERENT.

A)
 int i;
 for (i = 0; 12 > i; i++) {
 // loop body
 }

B)
 int i = 0;
 do {
 // loop body
 } while (12 > ++i);

C)
 int i = 0;
 while (12 > i++) {
 // loop body
 }

D)
 int i = -1;
 do {
 i++;
 // loop body
 } while (11 != i);

E)
 int i = 0;
 while (12 > i) {
 // loop body
 i++;
 }

Page 2

Problem 1 (25 points): C Operators and Loops

Read the following C function.
void func (int start, int count)
{
 while (0 < count--) {
 if (0 == (start % 2)) {
 start = start / 2;
 } else {
 start = 3 * start + 1;
 }
 printf ("%d,", start);
 }
}

Circle EXACTLY ONE ANSWER for each question.

1. (5 points) What is printed by the function call func (42, 1)?

A) “21,” B) func has a C) “21,64,” D) nothing E) “127,”
 syntax error

2. (5 points) What is printed by the function call func (19, 3)?

A) func has a B) “,” C) “9,4,13,” D) “58,29,88,” E) “58,29,88,44,”
 syntax error

3. (5 points) What is printed by the function call func (200, 0)?

A) “200,” B) “4,2,1,” C) func has a D) “100,” E) nothing
 syntax error

4. (5 points) For one of the loops below, the behavior within the loop body is slightly different from the other

loops. Circle EXACTLY ONE ANSWER to indicate which loop is DIFFERENT.

A)
 int i;
 for (i = 0; 12 > i; i++) {
 // loop body
 }

B)
 int i = 0;
 do {
 // loop body
 } while (i++ < 12);

C)
 int i = -1;
 while (12 > i++) {
 // loop body
 }

D)
 int i = -1;
 do {
 ++i;
 // loop body
 } while (12 != i);

E)
 int i = 0;
 while (i <= 12) {
 // loop body
 ++i;
 }

Problem 1, continued:

Read the program below.

#define PI 3.1415926

void main()
{
 int y = 3.14;
 int x = 8;
 int temp = 90;
 int humi = 80;

 if (y != PI) {
 printf ("y is not PI.\n"); // FIRST printf
 }

 if (!(x = 9)) {
 printf ("x is not 9.\n"); // SECOND printf
 }

 if ((temp >= 80) && (humi >= 50)) {
 printf ("Wow, it's hot!\n"); // THIRD printf
 }

 if ((temp < 60) || (temp > 80)) {
 printf ("The room is uncomfortable.\n"); // FOURTH printf
 }
}

(5 points) The programmer who wrote the code above expected all four printf statements to execute. Circle
EXACTLY ONE ANSWER to indicate which printf statement is not executed.

A) FIRST B) SECOND C) THIRD D) FOURTH E) All four print.

Page 3

Problem 1, continued:

Read the program below.

#define PI 3.1415926

void main()
{
 int y = 0x880;
 int x = 8;
 int mask = 0x888;
 int val = 0xFFC;
 int pie = PI;

 if (x + y == mask) {
 printf ("Sum checks out.\n"); // FIRST printf
 }

 if ((mask >> 8) == x) {
 printf ("x is largest hex of mask.\n"); // SECOND printf
 }

 if ((val == (mask | val)) && (mask == (val & mask))) {
 printf ("Mask and val are equal!\n"); // THIRD printf
 }

 if (pie == PI) {
 printf ("PI has not changed.\n"); // FOURTH printf
 }
}

5. (5 points) The programmer who wrote the code above expected all four printf statements to execute.

Circle EXACTLY ONE ANSWER to indicate which printf statement is NOT executed.

A) All four print. B) FIRST C) SECOND D) THIRD E) FOURTH

Page 3

Problem 1, continued:

Read the program below.

#define PI 3.1415926

void main()
{
 int y = 0x410;
 int x = 4;
 int mask = 0x414;
 int val = 0xFFC;
 double pie = PI;

 if (x + y == mask) {
 printf ("Sum checks out.\n"); // FIRST printf
 }

 if ((mask >> 2) == x) {
 printf ("x is largest hex of mask.\n"); // SECOND printf
 }

 if ((val == (mask | val)) && (mask == (val & mask))) {
 printf ("Mask and val are equal!\n"); // THIRD printf
 }

 if (pie == PI) {
 printf ("PI has not changed.\n"); // FOURTH printf
 }
}

5. (5 points) The programmer who wrote the code above expected all four printf statements to execute.

Circle EXACTLY ONE ANSWER to indicate which printf statement is NOT executed.

A) All four print. B) FOURTH C) THIRD D) SECOND E) FIRST

Page 4

Problem 2 (25 points): Stack Frames and Assembly Code

(5 points) A call is made to a function with the following function signature:
 int zap (int b, int a, int c);

Circle EXACTLY ONE ANSWER below to indicate which stack frame might represent that of the
function zap at some point during its execution.

A)

R6 → x4565 a local variable 777
R5 → x4566 another local

variable
100

 x4567 previous frame
pointer

x457F

 x4568 return address x3222
 x4569 return value (bits)
 x456A a 92
 x456B b 15
 x456C c -17

B)

R6 → x5090 a local variable 222
R5 → x5091 another local

variable
199

 x5092 previous frame
pointer

x4FF0

 x5093 return address x3127
 x5094 return value 77
 x5095 b 41
 x5096 a -8
 x5097 c 99

C)

R5,R6 → x4566 a local variable 100
 x4567 previous frame

pointer
x4570

 x4568 return address x3117
 x4569 return value 93
 x456A b 42
 x456B a -5
 x456C c 7

D)

R6 → x5CCC a local variable 101
 x5CCD previous frame

pointer
x5D03

 x5CCE return address x3099
 x5CCF return value (bits)
 x5CD0 a 1000
 x5CD1 b 2000
R5 → x5CD2 c 3000

E)

R5,R6 → x4568 a local variable 999
 x4569 previous frame

pointer
x4601

 x456A return address x3333
 x456B return value (bits)
 x456C c 17
 x456D a -100
 x456E b -1000

Page 4

Problem 2 (25 points): Stack Frames and Assembly Code

1. (5 points) A call is made to a function with the following function signature:
 int zap (int n, int g, int p);

Circle EXACTLY ONE ANSWER below to indicate which stack frame might represent that of the
function zap at some point during its execution.

A)

R5,R6 → x5090 a local variable 222
 x5091 another local

variable
xECE

 x5092 previous frame
pointer

x50B0

 x5093 return address x3127
 x5094 return value 77
 x5095 g 41
 x5096 n -8
 x5097 p 99

B)

R6 → x4568 a local variable 999
 x4569 previous frame

pointer
x4580

 x456A return address x3333
 x456B return value (bits)
R5 → x456C p 17
 x456D g -100
 x456E n -1000

C)

R5,R6 → x4566 a local variable 100
 x4567 previous frame

pointer
x4570

 x4568 return address x3117
 x4569 return value 93
 x456A n 42
 x456B g -5
 x456C p 7

D)

R6 → x4565 a local variable 777
R5 → x4566 another local

variable
122

 x4567 previous frame
pointer

x4570

 x4568 return address x322C
 x4569 return value (bits)
 x456A g 92
 x456B n 100
 x456C p -17

E)

R6 → x5CCC a local variable 101
 x5CCD another local

variable
731

 x5CCE a third local
variable

442

 x5CCF previous frame
pointer

x5D03

 x5CD0 return address x3099
 x5CD1 return value (bits)
R5 → x5CD2 n 1000
 x5CD3 g 2000
 x5CD4 p 3000

Page 5

Problem 2, continued:

Prof. Lumetta has translated the C code below into LC-3 assembly language shown beneath the C code.

int to_upper (char* s)
{
 int cnt = 0;
 while ('\0' != *s) {
 if ('a' <= *s && 'z' >= *s) { // TEST LINE
 *s = *s – 'a' + 'A'; // UPDATE LINE
 cnt++;
 }
 s++;
 }
 return cnt;
}

TO_UPPER // 01
 ADD R6,R6,#-4 // 02
 STR R5,R6,#1 // 03
 STR R7,R6,#2 // 04
 ADD R5,R6,#0 // 05
 AND R0,R0,#0 // 06
 STR R0,R5,#0 // 07
AAAAA LDR R0,R5,#4 // 08
 LDR R0,R0,#0 // 09
 BRnp BBBBB // 10
 LDR R0,R5,#0 // 11
 STR R0,R5,#3 // 12
 LDR R7,R5,#2 // 13
 LDR R5,R5,#1 // 14
 ADD R6,R6,#3 // 15
 RET // 16
BBBBB LDR R0,R5,#4 // 17
 LDR R0,R0,#0 // 18
 LD R1,DDDDD // 19
 NOT R1,R1 // 20
 ADD R2,R1,R0 // 21

 ADD R2,R2,#1 // 22
 BRn CCCCC // 23
 LD R1,EEEEE // 24
 NOT R1,R1 // 25
 ADD R0,R1,R0 // 26
 ADD R0,R0,#1 // 27
 BRp CCCCC // 28
 LD R0,FFFFF // 29
 ADD R2,R2,R0 // 30
 LDR R0,R5,#4 // 31
 STR R2,R0,#0 // 32
 LDR R0,R5,#0 // 33
 ADD R0,R0,#1 // 34
 STR R0,R5,#0 // 35
CCCCC LDR R0,R5,#4 // 36
 ADD R0,R0,#1 // 37
 STR R0,R5,#4 // 38
 BRnzp AAAAA // 39
DDDDD .FILL 'a' // 40
EEEEE .FILL 'z' // 41
FFFFF .FILL 'A' // 42

Circle EXACTLY ONE ANSWER for each question.

(5 points): Which lines of the assembly code set up the stack frame?

A) 02 to 07 B) 29 to 39 C) 11 to 16 D) 08 to 10 E) 02 to 05

(5 points): Which lines of the assembly code tear down the stack frame?

A) 29 to 39 B) 02 to 05 C) 13 to 15 D) 08 to 10 E) 36 to 39

(5 points): Which lines of the assembly code correspond to the “TEST LINE” in the C code?

A) 29 to 35 B) 17 to 28 C) 11 to 15 D) 08 to 10 E) 24 to 39

(5 points): Which line of the assembly code performs the write to *s in the “UPDATE LINE” of the C code?

A) 12 B) 07 C) 38 D) 32 E) 35

Page 5

Problem 2, continued:

Prof. Lumetta has translated the C code below into LC-3 assembly language shown beneath the C code.

char* fill (int a, int b, char* s)
{
 int c;
 int i;

 if (a <= b) { // AB COMPARISON
 c = a; // INIT TO A
 } else {
 c = b;
 }
 for (i = 0; c > i; i++) {
 *(s++) = '+'; // LOOP BODY
 }
 return s; // RETURN S
}

FILL ADD R6,R6,#-5 // 01
 STR R5,R6,#2 // 02
 STR R7,R6,#3 // 03
 ADD R5,R6,#1 // 04
 LDR R0,R5,#4 // 05
 LDR R1,R5,#5 // 06
 NOT R1,R1 // 07
 ADD R0,R0,R1 // 08
 ADD R0,R0,#1 // 09
 BRp AAAAA // 10
 LDR R0,R5,#4 // 11
 STR R0,R5,#-1 // 12
 BRnzp BBBBB // 13
AAAAA LDR R0,R5,#5 // 14
 STR R0,R5,#-1 // 15
BBBBB AND R0,R0,#0 // 16
 STR R0,R5,#0 // 17
CCCCC LDR R0,R5,#-1 // 18
 LDR R1,R5,#0 // 19
 NOT R1,R1 // 20

 ADD R0,R0,R1 // 21
 ADD R0,R0,#1 // 22
 BRp DDDDD // 23
 LDR R0,R5,#6 // 24
 STR R0,R5,#3 // 25
 LDR R7,R5,#2 // 26
 LDR R5,R5,#1 // 27
 ADD R6,R6,#4 // 28
 RET // 29
DDDDD LDR R0,R5,#6 // 30
 LD R1,EEEEE // 31
 STR R1,R0,#0 // 32
 ADD R0,R0,#1 // 33
 STR R0,R5,#6 // 34
 LDR R0,R5,#0 // 35
 ADD R0,R0,#1 // 36
 STR R0,R5,#0 // 37
 BRnzp CCCCC // 38
EEEEE .FILL x002B ; '+' // 39

Circle EXACTLY ONE ANSWER for each question.

2. (5 points) Which lines of the assembly code perform the “AB COMPARISON” test in the C code?

A) 18 to 22 B) 30 to 38 C) 05 to 09 D) 11 to 15 E) 01 to 04

3. (5 points) Which lines of the assembly code perform the “INIT TO A” statement in the C code?

A) 16 to 17 B) 11 to 12 C) 14 to 15 D) 30 to 34 E) 01 to 10

Page 6

Problem 2, continued: (code replicated for your convenience)

char* fill (int a, int b, char* s)
{
 int c;
 int i;

 if (a <= b) { // AB COMPARISON
 c = a; // INIT TO A
 } else {
 c = b;
 }
 for (i = 0; c > i; i++) {
 *(s++) = '+'; // LOOP BODY
 }
 return s; // RETURN S
}

FILL ADD R6,R6,#-5 // 01
 STR R5,R6,#2 // 02
 STR R7,R6,#3 // 03
 ADD R5,R6,#1 // 04
 LDR R0,R5,#4 // 05
 LDR R1,R5,#5 // 06
 NOT R1,R1 // 07
 ADD R0,R0,R1 // 08
 ADD R0,R0,#1 // 09
 BRp AAAAA // 10
 LDR R0,R5,#4 // 11
 STR R0,R5,#-1 // 12
 BRnzp BBBBB // 13
AAAAA LDR R0,R5,#5 // 14
 STR R0,R5,#-1 // 15
BBBBB AND R0,R0,#0 // 16
 STR R0,R5,#0 // 17
CCCCC LDR R0,R5,#-1 // 18
 LDR R1,R5,#0 // 19
 NOT R1,R1 // 20

 ADD R0,R0,R1 // 21
 ADD R0,R0,#1 // 22
 BRp DDDDD // 23
 LDR R0,R5,#6 // 24
 STR R0,R5,#3 // 25
 LDR R7,R5,#2 // 26
 LDR R5,R5,#1 // 27
 ADD R6,R6,#4 // 28
 RET // 29
DDDDD LDR R0,R5,#6 // 30
 LD R1,EEEEE // 31
 STR R1,R0,#0 // 32
 ADD R0,R0,#1 // 33
 STR R0,R5,#6 // 34
 LDR R0,R5,#0 // 35
 ADD R0,R0,#1 // 36
 STR R0,R5,#0 // 37
 BRnzp CCCCC // 38
EEEEE .FILL x002B ; '+' // 39

Circle EXACTLY ONE ANSWER for each question.

4. (5 points) Which line of the assembly code performs ADD operation for the increment of s
in the “LOOP BODY” of the C code?

A) 09 B) 04 C) 33 D) 22 E) 36

5. (5 points) Which lines of the assembly code perform the “RETURN S” statement in the C code?

A) 18 to 22 B) 26 to 29 C) 24 to 25 D) 09 to 14 E) 30 to 34

Page 5

Problem 2, continued:

Prof. Lumetta has translated the C code below into LC-3 assembly language shown beneath the C code.

char* fill (int a, int b, char* s)
{
 int c;
 int i;

 if (a <= b) {
 c = a;
 } else {
 c = b; // INIT TO B
 }
 for (i = 0; c > i; i++) { // FOR LOOP
 *(s++) = '+';
 }
 return s;
}

FILL ADD R6,R6,#-5 // 01
 STR R5,R6,#2 // 02
 STR R7,R6,#3 // 03
 ADD R5,R6,#1 // 04
 LDR R0,R5,#4 // 05
 LDR R1,R5,#5 // 06
 NOT R1,R1 // 07
 ADD R0,R0,R1 // 08
 ADD R0,R0,#1 // 09
 BRp AAAAA // 10
 LDR R0,R5,#4 // 11
 STR R0,R5,#-1 // 12
 BRnzp BBBBB // 13
AAAAA LDR R0,R5,#5 // 14
 STR R0,R5,#-1 // 15
BBBBB AND R0,R0,#0 // 16
 STR R0,R5,#0 // 17
CCCCC LDR R0,R5,#-1 // 18
 LDR R1,R5,#0 // 19
 NOT R1,R1 // 20

 ADD R0,R0,R1 // 21
 ADD R0,R0,#1 // 22
 BRp DDDDD // 23
 LDR R0,R5,#6 // 24
 STR R0,R5,#3 // 25
 LDR R7,R5,#2 // 26
 LDR R5,R5,#1 // 27
 ADD R6,R6,#4 // 28
 RET // 29
DDDDD LDR R0,R5,#6 // 30
 LD R1,EEEEE // 31
 STR R1,R0,#0 // 32
 ADD R0,R0,#1 // 33
 STR R0,R5,#6 // 34
 LDR R0,R5,#0 // 35
 ADD R0,R0,#1 // 36
 STR R0,R5,#0 // 37
 BRnzp CCCCC // 38
EEEEE .FILL x002B ; '+' // 39

Circle EXACTLY ONE ANSWER for each question.

2. (5 points) Which lines of the assembly code set up the stack frame?

A) 01 to 06 B) 30 to 38 C) 24 to 28 D) 14 to 17 E) 01 to 04

3. (5 points) Which lines of the assembly code tear down the stack frame?

A) 01 to 06 B) 30 to 38 C) 26 to 28 D) 24 to 28 E) 18 to 22

Page 6

Problem 2, continued: (code replicated for your convenience)

char* fill (int a, int b, char* s)
{
 int c;
 int i;

 if (a <= b) {
 c = a;
 } else {
 c = b; // INIT TO B
 }
 for (i = 0; c > i; i++) { // FOR LOOP
 *(s++) = '+';
 }
 return s;
}

FILL ADD R6,R6,#-5 // 01
 STR R5,R6,#2 // 02
 STR R7,R6,#3 // 03
 ADD R5,R6,#1 // 04
 LDR R0,R5,#4 // 05
 LDR R1,R5,#5 // 06
 NOT R1,R1 // 07
 ADD R0,R0,R1 // 08
 ADD R0,R0,#1 // 09
 BRp AAAAA // 10
 LDR R0,R5,#4 // 11
 STR R0,R5,#-1 // 12
 BRnzp BBBBB // 13
AAAAA LDR R0,R5,#5 // 14
 STR R0,R5,#-1 // 15
BBBBB AND R0,R0,#0 // 16
 STR R0,R5,#0 // 17
CCCCC LDR R0,R5,#-1 // 18
 LDR R1,R5,#0 // 19
 NOT R1,R1 // 20

 ADD R0,R0,R1 // 21
 ADD R0,R0,#1 // 22
 BRp DDDDD // 23
 LDR R0,R5,#6 // 24
 STR R0,R5,#3 // 25
 LDR R7,R5,#2 // 26
 LDR R5,R5,#1 // 27
 ADD R6,R6,#4 // 28
 RET // 29
DDDDD LDR R0,R5,#6 // 30
 LD R1,EEEEE // 31
 STR R1,R0,#0 // 32
 ADD R0,R0,#1 // 33
 STR R0,R5,#6 // 34
 LDR R0,R5,#0 // 35
 ADD R0,R0,#1 // 36
 STR R0,R5,#0 // 37
 BRnzp CCCCC // 38
EEEEE .FILL x002B ; '+' // 39

Circle EXACTLY ONE ANSWER for each question.

4. (5 points) Which line of the assembly code performs ADD operation for the increment of i
in the “FOR LOOP” of the C code?

A) 09 B) 33 C) 04 D) 22 E) 36

5. (5 points) Which lines of the assembly code perform the “INIT TO B” statement in the C code?

A) 16 to 17 B) 24 to 25 C) 11 to 12 D) 14 to 15 E) 30 to 34

	e1.f05
	e1.f08
	pages2to7.pdf

	e1.s08
	e2.docpart
	e2.f05
	e2.f08
	p2to12.pdf

	e2.s08
	exam1
	exam2
	final.f08
	pages2to13.pdf

	samples-from-VN-exams
	HCMUT-ECE220-2015-12-midterm
	HCMUT-ECE220-2017-12-midterm-morning

