
Page 2

Problem 1 (20 points): Testing and Debugging

(10 points) The recursive function below is meant to return 1 if the length of the string passed is odd, and 0 if
the length of the string passed is even. Unfortunately, the function has a bug. In NO MORE THAN 15
WORDS, describe the bug. Then fix the function.

(the bug) ___

int strodd (const char* s)
{
 if ('\0' == *(s + 1)) {
 return 1;
 }
 if ('\0' == *s) {
 return 0;
 }
 return (strodd (s + 2));
}

(10 points) The function below is meant to check whether two strings, s and t, match each other when
reversed. For example, “example” matches “elpmaxe” when reversed. If the strings match when reversed,
the function should return 1, and should otherwise return 0. Sadly, the function has a bug. In NO MORE
THAN 15 WORDS, describe the bug. Then fix the function.

(the bug) ___

int backwards (const char* s, const char* t)
{
 const char* u = s;

 while ('\0' != *u) { u++; }

 do {
 if (*--u != *t++) {
 return 0;
 }
 } while (s < u);

 return ('\0' == *t);
}

Page 3

Problem 2 (30 points): Manipulating Linked Lists

Prof. Lumetta needs your help!

He has gathered his books into a linked list of book_t structures, defined as shown below. The next field
links one book to the next in the list.

typedef struct book_t book_t;
struct book_t {
 char* title;
 char* author;
 char* call_number;
 int due_date;
 book_t* next;
};

Prof. Lumetta needs to separate a linked list of “books” (book_t’s) into two separate lists based on their due
dates (the due_date field).

Help Prof. Lumetta by completing the C function on the following page. The function signature is as follows:

book_t* collect_books (book_t** listp, int due_by);

The function takes two parameters:
listp—a pointer to a pointer to the first book in the original linked list of books
due_by—the date used to separate the list

The function must separate the original list into two separate linked lists, each correctly terminated, as follows:

All books with due_date field less than or equal to due_by should be removed from the original list
and collected into a new list. The order of these books in the new list does not matter. The function
must return a pointer to the first book in the new list.

Any book with a due_date larger than due_by should remain in the original list. The order of these
remaining books must not change. The function must update the value to which listp points to
indicate the first book in the original list with a due_date larger than due_by.

Page 4

Problem 2, continued:

/* structure definition replicated for your convenience */

typedef struct book_t book_t;
struct book_t {
 char* title;
 char* author;
 char* call_number;
 int due_date;
 book_t* next;
};

/* Complete the function by filling in the blanks. */

book_t* collect_books (book_t** listp, int due_by)
{
 book_t* collected;
 book_t* book;

 ___ ;

 while (____________________________________) {

 book = *listp;

 if (due_by < ______________________________) {

 listp = _________________________________ ;

 } else {

 *listp = _________________________________ ;

 __ ;

 collected = ______________________________ ;
 }
 }

 __ ;
}

Page 5

Problem 3 (20 points): Data Structures in Memory

This problem refers to the data structure shown below, one of which is similar (NOT identical) to a structure
used in Problem 2. Shown below on the left is C code defining these data structures along with the variables
flt, ptr, lib, and str_p. Shown on the right is the LC-3 memory at runtime.

 C code: LC-3 Memory

struct library_t {
 char* name;
 book_t* books;
 book_t* borrowed;
 library_t* next;
};
struct book_t {
 char* title;
 char* author;
 book_t* next;
};
float flt;
float* ptr;
library* lib;
char** str_p;

Complete the table below by indicating the value and C type for each expression in the left column. If the
expression is a structure, provide the start and end address of the structure (for example,
Mem[start_addr : end_addr]) instead of a value. The first two rows of the table have been completed for you.

Expression Value C type
flt xABCD float
&flt x4010 float *
ptr
*ptr
&ptr
lib->books
**str_p
lib->books->next
&(lib->books->next->next)
*(lib->books->name)
*(lib->borrowed)
lib - 1

Address Data Comments
x4001 x5165
x4002 x400D
x4003 x0000
x4004 xA792
x4005 x400A
x4006 x4915
x4007 x7492
x4008 x004F
x4009 x0000
x400A x4008
x400B x8217
x400C x4001
x400D x0053
x400E x004C
x400F x0000
x4010 xABCD flt
x4011 x400F ptr
x4012 x4004 lib
x4013 x4002 str_p

Page 6

Problem 4 (30 points): Dynamic Allocation and I/O

Prof. Lumetta needs your help with a function designed to read a two-dimensional array of integers (called a
“matrix”) from a file. The height and width of the matrix are stored on the first line of the file, followed by
the (height × width) elements of the matrix.

The function must read the height and width, check that they are valid (from 1 to 100 each), allocate space for
the array, then read all elements of the matrix from the file into the dynamically-allocated array.

If anything goes wrong while reading the matrix from the file f, the function must free any dynamically-
allocated memory and return NULL.

The function also takes two other parameters, heightPtr and widthPtr. If the matrix is read successfully
from the file, the function must write the height and width of the matrix to these pointers, respectively.
Otherwise, the values pointed to by the pointers are not relevant (they can be changed, but they will be ignored
by the caller).

COMPLETE THE CODE on the next page by filling in the blanks appropriately.

An example of the matrix file format appears below.

3 5
1 2 3 4 6
-2 4 1 200 42
0 1 2 72 4

Page 7

Problem 4, continued:

int* readIntMatrix (FILE* f, int* heightPtr, int* widthPtr)
{
 char buf[100];
 int* m;
 int nElts;
 int i;

 if (NULL == f || NULL == heightPtr || NULL == widthPtr) {
 return NULL;
 }
 if (NULL == fgets (buf, 100, f) ||

 2 != sscanf (buf, "__________________________", heightPtr, widthPtr) ||

 0 > *heightPtr || 100 < *heightPtr ||

 0 > *widthPtr || 100 < *widthPtr) {

 return NULL;
 }

 nElts = __ ;

 m = malloc (_____________________________________ * nElts);

 if (______________________________________) {

 return NULL;
 }

 for (i = 0; nElts > i; i++) {
 if (1 != fscanf (f, "%d", _______________________________)) {

 ___ ;

 ___ ;
 }
 }

 ___ ;
}

