
University of Illinois at Urbana-Champaign 
First Midterm Exam, ECE 220 Honors Section 

 
Thursday 15 February 2018 

 

 
 
 
 

 Be sure that your exam booklet has ELEVEN pages. 
 

 Write your name and Net ID on the first page. 
 

 Do not tear the exam apart other than to remove the reference sheet. 
 

 This is a closed book exam.  You may not use a calculator. 
 

 You are allowed one handwritten 8.5×11-inch sheet of notes (both sides). 
 

 The last page of the exam gives RTL for LC-3 instructions (except JSRR; given JSRR 
BaseR, the RTL is PC ← BaseR, R7 ← PC).   Copies of Patt & Patel’s Appendix A are 
also available during the exam. 

 
 Absolutely no interaction between students is allowed. 

 
 Show all work, and clearly indicate any assumptions that you make. 

 
 Don’t panic, and good luck! 

 
Problem 1 24 points _______________________________ 
 
Problem 2 20 points _______________________________ 
 
Problem 3 20 points _______________________________ 
 
Problem 4 16 points _______________________________ 
 
Problem 5 20 points _______________________________ 
 
 
 
 
Total  100 points _______________________________ 

Name:  SOLUTION IS IN RED 
 
 
Net ID: 



Problem 1 (24 points): Short Answer Questions 
 
1.  (12 points) A fellow ECE 220 student is attempting to write a program that calculates either the product 
or the sum of numbers from 1 to N.  The user first types the value of N, which must be a positive integer.  
The student’s code reads the number N from the keyboard using the READ_N subroutine, which handles 
any non-numeric input as well as overflow, returning only when the human user has entered a positive value 
for N.  Next, the user presses either the asterisk key (“*”) or the plus key (“+”) to tell the program whether to 
calculate the product or the sum of the numbers from 1 to N, respectively.  The result is then stored in 
memory. 

Using NO MORE THAN 15 WORDS, describe each of the following.  Answering with code will earn no 
credit. 

a. (4 points) One subtask for which the programmer should use a sequential decomposition. 

 

main task: read N, read operation, compute, store result 

 

 

b. (4 points) One subtask for which the programmer should use a conditional decomposition. 

 

compute: sum or product? 

 

 

c. (4 points) One subtask for which the programmer should use an iterative decomposition. 

 
sum / multiply numbers from 1 to N 

 
 
 
 
2.  (4 points) Fill in the blanks below so that the resulting LC-3 subroutine, MYOUTPUT, writes an ASCII 
character from R5 out to the display using memory-mapped I/O (in other words, do not use TRAPs nor other 
subroutine calls).  You may change R0 and/or R7 if necessary.  All other registers are callee-saved. 
 
MYOUTPUT  ___LDI R0,DSR___       _______ 

          ___BRzp MYOUTPUT______     ___ 

          ___STI R5,DDR_______       ___ 

          ____________________       ___ 

          ____________________       ___ 

          RET 
DSR     .FILL xFE04 
DDR     .FILL xFE06 
  



Problem 1, continued: 
 
3.  (8 points) Consider the multiplication subroutine shown below. 
 
; Takes two positive integers and returns the product 
MULT AND R1, R1, #0 
 ADD R3, R3, #0 
 BRz DONE 
LOOP ADD R1, R1, R2 
 ADD R3, R3, #-1 
 BRp LOOP 
DONE RET 
 

a. (2 points) Which registers hold the operands for multiplication by the subroutine? ___R2, R3_____ 

 

b. (2 points) In which register does the subroutine return the product?  ____R1________ 

 

c. (2 points) Which registers in the MULT subroutine are callee-saved?  _R0,R2,R4,R5,R6 

 

d. (2 points) Which registers in the MULT subroutine are caller-saved?  ___R1,R3,R7___ 



Problem 2 (20 points): Writing LC-3 Code 
 
In this problem, you must write a subroutine, SWAPBYTES, that swaps the two 8-bit bytes held in  
one 16-bit LC-3 register.   
 
For example, given the initial value xCDAB, your subroutine must move xCD into the low 8 bits and xAB 
into the high 8 bits to produce the value xABCD.  Similarly, given the initial value xEBEC, your subroutine 
must swap the xEB with the xEC to produce the 16-bit value xECEB. 
 
The call interface for SWAPBYTES is as follows: 

Input: R1, a 16-bit value (2 bytes) 
Output: R2, a 16-bit value (2 bytes) with bytes swapped 

 All registers are caller-saved. 
 
Requirements for your subroutine: 

 Use at most 25 instructions (excludes labels, .ORIG, .END,. FILL, .BLKW). 
Any code after the 25th instruction will not be graded. 
It is possible to finish this problem with 12 instructions or less. 

 You must use a loop(s) in your code. Manual repetition will receive ZERO credit. 

 Briefly comment your code and describe how each register is used.  
You are not required to comment every line. 

 
 

Write your subroutine on the next page. 
 

(Use the back of this page if you need more space.) 

 
  



Problem 2, continued: (call interface and examples reproduced for your convenience) 
 
SWAPBYTES 
Input: R1 – 2 bytes (16 bits)  
Output: R2 – 2 bytes (16 bits) with bytes swapped  
All registers are caller-saved. 
 
Example 1: 
R1 - 0xCDAB → R2 - 0xABCD 
 

Example 2: 
R1 - 0xEBEC → R2 - 0xECEB 

.ORIG x3100 

SWAPBYTES 

      AND R2,R2,#0    ; R2 will hold the low byte of R1 

      AND R3,R3,#0    ; R3 is a loop counter (8 bits) 

      ADD R3,R3,#8 

LOOP  ADD R2,R2,R2    ; shift R2 left to make space for a bit 

      ADD R1,R1,#0    ; copy bit 15 from R1 

      BRzp ZERO 

      ADD R2,R2,#1 

ZERO  ADD R1,R1,R1    ; shift copied bit out of R1 

      ADD R3,R3,#-1   ; count down 

      BRp LOOP        ; keep copying until 8 bits shifted 

      ; R2 now has the high 8 bits of original value in low byte 

      ; R1 now has the low 8 bits of original value in high byte 

      ADD R2,R2,R1    ; merge bytes into R2 

      RET 

.END 

 



Page 6      
 

Problem 3 (20 points): Division with a Stack 
 
Write subroutine STACKDIVIDE in the space below.  Given a stack containing some number ( ≥ 2) of 
positive integers, with R6 pointing to the top of the stack, the routine STACKDIVIDE operates as follows: 

1. Pops two numbers. 
2. Uses the DIVIDE subroutine (interface specified below) to divide the first number  

popped by the second number popped, ignoring any remainder. 
3. Jumps to Step 6 if the stack is empty (stack pointer equal to value at BASEPTR). 
4. Otherwise, pushes the result onto the stack 
5. Returns to Step 1 (repeats the process). 
6. Stores the result of the final division into the memory location labeled ANS. 

Step 2 must utilize the DIVIDE subroutine, whose address is stored at the label DIVIDE_ADDRESS.  As 
input, the DIVIDE subroutine expects the dividend (numerator) in R1 and the divisor (denominator) in R2, 
then returns the quotient in R3.  All registers except R3 and R7 are callee-saved with DIVIDE. 

On return from STACKDIVIDE, R6 must point to the base of the stack.  All other registers are  
caller-saved.  Use the memory location labeled as SAVE to save any value that you find necessary to save.  
Briefly comment your code and describe how each register is used.  Use the back of this sheet if you need 
more space, but we will only read up to 30 instructions. 
 
STACKDIVIDE 

      ST R7,SAVE        ; save R7 – need to use JSRR 
      LD R4,BASEPTR     ; set R4 to -<base of stack> 
      NOT R4,R4 
      ADD R4,R4,#1 
LOOP  LDR R1,R6,#0      ; pop numerator into R1 
      LDR R2,R6,#1      ; pop denominator into R2 
      ADD R6,R6,#2 
      LD R7,DIVIDE_ADDRESS  ; call DIVIDE 
      JSRR R7 
      ADD R5,R4,R6      ; is stack empty? 
      BRz DONE          ; if so, go to DONE 
      ADD R6,R6,#-1     ; push R3 (quotient) 
      STR R3,R6,#0 
      BRnzp LOOP        ; go back to step 1 
DONE  ST R3,ANS         ; store answer 
      LD R7,SAVE        ; restore R7 
  

 

 

 

 

 

 

 

                        RET 
BASEPTR        .FILL x4000 ; base of stack  
SAVE           .BLKW #1 
ANS            .BLKW #1 
DIVIDE_ADDRESS .FILL x7000 ; the DIVIDE subroutine is at this address 



Page 7      
 

Problem 4 (16 points): C Variables and Function Calls 
 
1. (12 points) Read the program below. 
 
#include <stdint.h> 
#include <stdio.h> 
 
int32_t mystery (int32_t x); 
 
int main()  
{ 
    int32_t a; 
    int32_t b = 3; 
    int32_t c = 5; 
    int32_t d = 7; 
 
    { 
        int32_t c = 9; 
        a = mystery (b); 
        d = 11; 
        printf ("a: %d, b: %d, c: %d, d: %d\n", a, b, c, d); 
    } 
     
    b = 7; 
    a = mystery (b); 
    printf ("a: %d, b: %d, c: %d, d: %d\n", a, b, c, d); 
} 
 
int32_t mystery (int32_t x)  
{ 
    static int32_t y = 0; 
    x = x + 1; 
    y = y + x; 
    return y; 
} 

Circle EXACTLY ONE ANSWER for each question. 
 

a. (6 points) For the two calls to printf(), what are the expected printed values of a and b? 

1) a: 4, b: 3 and a: 8, b: 7 

2) a: 4, b: 3 and a: 12, b: 7 

3) a: 4, b: 4 and a: 8, b: 8 

4) a: 4, b: 4 and a: 12, b: 8 

5) The program does not compile. 

b. (6 points) For the two calls to printf(), what are the expected printed values of c and d? 

1) c: 5, d: 7 and c: 5, d: 7 

2) c: 5, d: 11 and c: 5, d: 11 

3) c: 9, d: 11 and c: 5, d: 11 

4) c: 9, d: 11 and c: 9, d: 7 

5) The program does not compile. 



Page 8      
 

Problem 4, continued: 
 
2. (4 points) Consider a C function example called by another function.  The left block of code below 

corresponds to the caller, and the right block corresponds to the callee (the function example). 
 

This question focuses on whether the LC-3 instructions depend on the number of parameters  
needed by the function example. 
 
For each of the four blanks (explained by the comments immediately above them), write “YES” if the 
LC-3 instructions depend on the number of parameters passed to example, or write “NO” if the LC-3 
instructions do not depend on the number of parameters passed to example. 

 
 
 
; prepare for call 

     YES   

JSR EXAMPLE 

; clean up after call 

     YES   

 
 

EXAMPLE 
; set up stack frame 

  NO   

; (execute C statements) 

; tear down stack frame 

  NO   
 
 
RET

 
 
  



Page 9      
 

Problem 5 (20 points): Understanding Compiled C Code 
 
1. (15 points) The LC-3 code below corresponds to the output of a compiler for the C function foo.  Based 

on the LC-3 code, write C code for foo from which a non-optimizing compiler might have produced the 
LC-3 code. 

 
FOO ADD R6, R6, #-4  ; one local variable 

STR R5, R6, #1 
ADD R5, R6, #0 
STR R7, R5, #2  ; last instruction to set up stack frame 

 LDR R0, R5, #4   ; A = x 
 STR R0, R5, #0 
LOOP LDR R0, R5, #4  ; if x <= 0, branch to DONE (loop ends) 

BRnz DONE 
 LDR R1, R5, #5  ; push Y 
 ADD R6, R6, #-1 
 STR R1, R6, #0 
 LDR R2, R5, #0  ; push A 
 ADD R6, R6, #-1 
 STR R2, R6, #0 
 JSR ANOTHER  ; call this subroutine "another" in C 
 LDR R3, R6, #0  ; R3 <- return value 
 ADD R6, R6, #3  ; pop return value and parameters 
 STR R3, R5, #0  ; A = return value 
 LDR R1, R5, #4  ; x-- 
 ADD R1, R1, #-1 
 STR R1, R5, #4 
 BRnzp LOOP 
DONE LDR R0, R5, #0  ; return A 
 STR R0, R5, #3 
 LDR R7, R5, #2  ; tear down stack frame 
 LDR R5, R5, #1 
 ADD R6, R6, #3 
 RET 

 
Write the C function foo below.  For parameters, choose names from X, Y, and Z.  For local variables, 
choose names from A, B, and C.  (There are no more than three of either type.)  All types are int. 
 
int foo (int X, int Y) 
{ 
    int A = x; 
 
    for ( /* blank */ ; x > 0 ; x--) { 
        A = another (A, Y); 
    } 
    return A; 
} 
  



Page 10      
 

Problem 5, continued: 
 
2. (5 points) Given the LC-3 implementation shown below of the C function another, write an 

expression for the value returned from function foo (from Part 1) in terms of the arguments passed 
(called A and B in the expression below): 
 
foo (A, B) evaluates to _________(A > 0 ? A * (1 – B) : A)______________ . 
 

 
ANOTHER 
 ADD R6, R6, #-3  ; no local variables 

STR R5, R6, #0 
ADD R5, R6, #-1 
STR R7, R5, #2  ; last instruction to set up stack frame 

  LDR R1, R5, #4  ; R1 <- X 
 LDR R2, R5, #5  ; R2 <- -Y 
 NOT R2, R2 
 ADD R2, R2, #1 
 ADD R1, R1, R2  ; R1 <- X - Y 
 STR R1, R5, #3  ; return X - Y 
 LDR R7, R5, #2  ; tear down stack frame 
 LDR R5, R5, #1 
 ADD R6, R6, #2 
 RET 
 
not needed for solution, but added here for clarity: 
 
int another (int X, int Y) 
{ 
    return X – Y; 
} 
 


