
ZJU-UIUC Institute
First Midterm Exam, ECE 220

Thursday 18 October 2018

 Be sure that your exam booklet has TEN pages.

 Write your name and Student ID on the first page.

 Do not tear the exam apart other than to remove the reference sheet.

 This is a closed book exam. You may not use a calculator.

 Challenge problems are marked with ***.

 You are allowed one handwritten A4 sheet of notes (both sides).

 The last page of the exam gives RTL for LC-3 instructions (except JSRR).
Copies of Patt & Patel’s Appendix A are also available during the exam.

 Absolutely no interaction between students is allowed.

 Show all work, and clearly indicate any assumptions that you make.

 Don’t panic, and good luck!

Problem 1 20 points _______________________________

Problem 2 16 points _______________________________

Problem 3 24 points _______________________________

Problem 4 20 points _______________________________

Problem 5 20 points _______________________________

Total 100 points _______________________________

Name (pinyin and Hanzi):

SOLUTION IS IN RED
Student ID:

Problem 1 (20 points): Short Answer Questions

1. (12 points) While working as an intern at a company developing self-driving vehicles, you are tasked
with writing code for the anti-lock braking system (ABS) for 18-wheel trucks. Each truck has six brakes
(four brakes control four wheels each, and two brakes control one wheel each).

The ABS code must check whether the human is pressing the brake pedal and whether the tires are spinning
more slowly than the truck is moving (all of these values are provided to your code). If both conditions hold,
the code must turn off all six brakes, pause for 100 milliseconds, and then turn on all six brakes again.

Using NO MORE THAN 10 WORDS, describe each of the following. Answering with code will earn no
credit.

a. (4 points) One subtask for which you should use a sequential decomposition.

when ABS is needed: turn off, pause, turn on

b. (4 points) One subtask for which you should use a conditional decomposition.

test whether ABS is needed or not

c. (4 points) One subtask for which you should use an iterative decomposition.

turn on/off all six brakes [these are two separate subtasks using iteration]

2. (4 points) A friend wants to add a 640×480-pixel monochrome (two-color) graphics adapter to his LC-3-
based computer. Using NO MORE THAN 25 WORDS, including any necessary calculations, explain how
to accomplish this goal, or why the goal is impossible.

 (640 × 480 pixels × 1 bit/pixel) / 16 bits/memory location = 19,200 memory locations

 LC-3 has only 512 (xFE00 to xFFFF) usable for memory-mapped I/O, so …

(1) Cannot map individual pixels without changes to design [as students know it], but
(2) Can change board design (hardware for I/O) to expand memory-mapped I/O

region, or
(3) Can use one or two ports with address / data I/O model [not something students

have seen, but an acceptable answer].

3. (4 points) A friend writes an LC-3 subroutine to calculate ⌊sqrt (𝐑𝟕)⌋, the largest integer that is not
greater than the square root of R7.

Using NO MORE THAN 15 WORDS, explain why your friend’s subroutine cannot work correctly.

 R7 is changed by JSR, so the input value is lost!

Problem 2 (16 points): Understanding LC-3 Code

The LC-3 subroutine MYSTERY appears below. Read it, then answer the questions below.

MYSTERY LD R1,VALUE
 AND R4,R4,R1
 AND R3,R3,#0
LOOP1 ADD R4,R4,#-16
 BRn FINISH1
 ADD R3,R3,#1
 BRnzp LOOP1
FINISH1 LEA R2,DATA
 ADD R2,R2,R3
 LDR R0,R2,#0
 AND R6,R6,#0
 ADD R6,R6,#1
LOOP2 ADD R4,R4,#1
 BRzp FINISH2
 ADD R6,R6,R6
 BRnzp LOOP2
FINISH2 AND R5,R0,R6
 RET
VALUE .FILL x007F
DATA .FILL x0000
 .FILL x0000
 .FILL x0000
 .FILL x0000
 .FILL x7FFF
 .FILL xFFE0
 .FILL x7FFF
 .FILL xFFE0

1. Assuming that R1=x00F2, R2 contains bits, and R4=x0040 at the start of the MYSTERY subroutine,

fill in the blanks below with final register values after the RET instruction executes. For any register for
which you cannot know the value, write “bits.”

R0: ____x7FFF______ R3: ____4__________ R6: ____x8000______ R7: ____bits_______

2. Assuming that R1 contains bits, R2=xABCD, and R4=xCFDE at the start of the MYSTERY subroutine,

fill in the blanks below with final register values after the RET instruction executes. For any register for
which you cannot know the value, write “bits.”

R0: ____xFFE0______ R3: ____5__________ R6: ____x0002______ R7: ____ bits_______

3. Assuming that R1=x7301, R2=x1234, and R4 contains bits at the start of the MYSTERY subroutine,

fill in the blanks below with final register values after the RET instruction executes. For any register for

which you cannot know the value, write “bits.”

R0: ____ bits________ R3: ____ bits________ R6: ____ bits________ R7: ____ bits_______

4. *** Using NO MORE THAN 30 WORDS, explain what MYSTERY does.

Checks whether R4[6:0] are in a set, returning R5 equal to 0 for “no” or non-zero for “yes.”
[The set is the set of ASCII letters, x41 to x5A and x61 to x7A, but students need neither know nor
say that for credit.]

Problem 3 (24 points): Using a String as a Stack

1. (10 points) Given in R4 a pointer to a NUL-terminated ASCII string consisting of hexadecimal digits
(0-9 and A-F), write a sequence of LC-3 instructions to do the following:

 point R6 to the start of the given string,
 change the NUL at the end of the string to an ASCII ‘0’ (x0030), and
 point R2 to the memory location after the NUL.

You may use all of the LC-3 registers.

The string may be empty—in other words, the string may contain no hexadecimal digits.

The string will not contain any ASCII characters other than 0 (x0030) through 9 (x0039) and A (x0041)
through F (x0046).

Use NO MORE THAN TEN MEMORY LOCATIONS, including storage for any data needed.
** Using more memory than TEN LOCATIONS will earn NO CREDIT. **

Here’s an example. Notice that, after the code executes, the string looks like a stack! You will use that fact
in the next problem.

at start of code address contents after code executes
R4 points here → x4123 x0032 '2' ← R6 points here
 x4124 x0041 'A'
 x4125 x0000 NUL ← NUL replaced with x0030 '0'
 x4126 bits ← R2 points here

(Include comments for more partial credit.)

Write your code here…

 ADD R6,R4,#0 ; set R6 to point to R4
LOOP LDR R3,R4,#0 ; check for NUL at end of string
 BRz FOUND ; on NUL, branch to FOUND
 ADD R4,R4,#1 ; point to next character in string
 BRnzp LOOP ; go check for NUL
FOUND LD R3,ZERO ; found NUL: replace it with '0'
 ST R3,R4,#0
 ADD R2,R4,#1 ; R2 points after the NUL

Write any data that you need here…

ZERO .FILL x0030 ; needed for writing '0'

Problem 3, continued:

2. (14 points) Now you must write a subroutine to make use of the “stack” produced by part (1). Your

subroutine, SUM_HEX, must use the CONVERT subroutine described below to convert the hex digits
into 2’s complement, and must use the STACK_ADD subroutine described below to add pairs of
2’s complement values until only one remains on the stack. The subroutine should then return, leaving
the 2’s complement sum of the digits on the top of the stack (pointed to by R6). See the description
below for more details on your subroutine.

These subroutines are provided to you:

CONVERT – convert a hexadecimal digit from ASCII to 2’s complement
Input: R0 – ASCII character representing a hexadecimal digit
Output: R3 – value of R0 in 2’s complement
All registers other than R3 and R7 are callee-saved.

STACK_ADD – add two 2’s complement values on top of a stack (pops two values,
 adds them, and pushes the sum back onto the stack)
Input: R6 – pointer to top of stack
Output: R6 – pointer to top of stack after operation
All registers other than R6 and R7 are callee-saved. R6 changes as described.

You must write the following subroutine:

SUM_HEX – convert and sum a stack of hexadecimal ASCII digits into a
 2’s complement sum
Inputs: R2 – base of stack
 R6 – top of stack
Output: R6 – top of stack (must be one address less than original base), which
 points to the sum of the digits
All registers are caller-saved.

*** WRITE YOUR CODE ON THE NEXT PAGE ***

Your subroutine may use all LC-3 registers (all registers are caller-saved).

Use NO MORE THAN TWENTY-FOUR MEMORY LOCATIONS, including storage for any data
needed. ** Using more memory than TWENTY-FOUR LOCATIONS will earn NO CREDIT. **

(Include comments for more partial credit.)

Problem 3, continued: (subroutine specifications duplicated for your convenience)

These subroutines are provided to you: (14 points)

CONVERT – convert a hexadecimal digit from ASCII to 2’s complement
Input: R0 – ASCII character representing a hexadecimal digit
Output: R3 – value of R0 in 2’s complement
All registers other than R3 and R7 are callee-saved.

STACK_ADD – add two 2’s complement values on top of a stack (pops two values,
 adds them, and pushes the sum back onto the stack)
Input: R6 – pointer to top of stack
Output: R6 – pointer to top of stack after operation
All registers other than R6 and R7 are callee-saved. R6 changes as described.

You must write the following subroutine:

SUM_HEX – convert and sum a stack of hexadecimal ASCII digits into a
 2’s complement sum
Inputs: R2 – base of stack
 R6 – top of stack
Output: R6 – top of stack (must be one address less than original base), which
 points to the sum of the digits
All registers are caller-saved.

SUM_HEX ST R7,SR7 ; save R7--need to perform JSRs in this subroutine
 NOT R2,R2 ; calculate –(base – 1) and put into R2
 ADD R2,R2,#2
 LDR R0,R6,#0 ; convert a value--always have at least one
 JSR CONVERT
 STR R3,R6,#0
LOOP ADD R4,R6,R2 ; one value left on the stack?
 BRz DONE ; if so, we are done
 LDR R0,R6,#1 ; convert value just below top of stack
 JSR CONVERT
 STR R3,R6,#1
 JSR STACK_ADD ; add two converted values on top of stack,
 ; leaving one value in 2’s complement
 BRnzp LOOP ; go check whether we are done
DONE LD R7,SR7 ; restore return address to R7
 RET ; return to caller

SR7 .BLKW #1 ; storage for R7

Problem 4 (20 points): Basics of C Programming

1. (8 points) The two C programs shown below are identical except for the line marked by the comments,
“DIFFERS!” Write the output of each program on the blank line below the corresponding code.

#include <stdio.h>
int main ()
{
 int32_t x = 0;
 int32_t i = 3;
 for (i = 0; 9 > i; i++) {
 if (5 <= ++i) {
 continue; // DIFFERS!
 }
 x++;
 }
 printf ("x: %d, i: %d\n",
 x, i);
 return 0;
}

_____x: 2, i: 10_________________

#include <stdio.h>
int main ()
{
 int32_t x = 0;
 int32_t i = 3;
 for (i = 0; 9 > i; i++) {
 if (5 <= ++i) {
 break; // DIFFERS!
 }
 x++;
 }
 printf ("x: %d, i: %d\n",
 x, i);
 return 0;
}

_____x: 2, i: 5__________________

2. Read the C function below, then answer the questions.

void foo (int32_t x)
{
 switch ((x < 4) - ((x < 5) ? 0 : 1)) {
 case -1:
 printf ("A");
 break;
 case 0:
 printf ("B");
 case 1:
 printf ("C");
 break;
 default:
 printf ("D");
 break;
 }
 return;
}

a. (4 points) What is the function’s output when parameter x is equal to 4? _____BC_______

b. (3 points) For what values(s) of parameter x, if any, does the function output D? ____none______

Page 8

Problem 4, continued:

3. (5 points) Read the program below, then write the program’s output on the blank line below the code.

#include <stdio.h>

int32_t
bar (int32_t x, int32_t y)
{
 if (y <= x) {
 x = x + y;
 }
 return x;
}

int
main ()
{
 int32_t y = 3;
 int32_t c = 6;

 {
 int32_t x = 2;

 c = bar (y, x);
 printf ("x: %d, y: %d, c: %d\n", x, y, c);
 }

 return 0;
}

Output: _____x: 2, y: 3, c: 5__

Page 9

Problem 5 (20 points): Understanding Compiled C Code

The LC-3 code below corresponds to the output of a compiler for the C function foo.

FOO ADD R6,R6,#-5 ; linkage + two local variables
 STR R5,R6,#2
 ADD R5,R6,#1
 STR R7,R5,#2 ; end of stack frame setup
 LDR R0,R5,#4 ; R0 ← X & Y & Z
 LDR R1,R5,#5
 AND R0,R0,R1
 LDR R1,R5,#6
 AND R0,R0,R1
 STR R0,R5,#-1 ; A ← R0
 LDR R0,R5,#-1 ; if (0 != A)
 BRz LABEL
 LDR R0,R5,#4 ; (then) push X - Y
 LDR R1,R5,#5
 NOT R1,R1
 ADD R1,R1,#1
 ADD R0,R0,R1
 ADD R6,R6,#-1
 STR R0,R6,#0
 LDR R0,R5,#-1 ; push A
 ADD R6,R6,#-1
 STR R0,R6,#0
 JSR FUNC_ONE ; call this subroutine "func_one" in C
 LDR R0,R6,#0 ; R0 ← return value
 ADD R6,R6,#3 ; clean up stack from call
 STR R0,R5,#0 ; B ← R0
 BRnzp DONE
LABEL LDR R0,R5,#4 ; (else) push X
 ADD R6,R6,#-1
 STR R0,R6,#0
 LDR R0,R5,#6 ; push Z
 ADD R6,R6,#-1
 STR R0,R6,#0
 JSR FUNC_TWO ; call this subroutine "func_two" in C
 LDR R0,R6,#0 ; R0 ← return value
 ADD R6,R6,#3 ; clean up stack from call
 STR R0,R5,#0 ; B ← R0
DONE LDR R0,R5,#0 ; return B
 STR R0,R5,#3
 LDR R7,R5,#2 ; tear down stack frame
 LDR R5,R5,#1
 ADD R6,R6,#4
 RET

Write C code for the function foo from which a non-optimizing compiler might have produced the LC-3
code above. For parameters, choose names from X, Y, and Z. For local variables, choose names from A, B,
and C. (There are no more than three of either type.) All types are int (16-bit 2’s complement).

int foo (int X, int Y, int Z) {
 int A = (X & Y & Z), B;
 if (0 != A) {
 B = func_one (A, X – Y);
 } else {
 B = func_two (Z, X);
 }
 return B;
}

