
04/10/18

13:00:17 1word_split.c
/*

 * ECE220 Spring 2018 (update from Fall 2005)

 *

 * Program name: word_split.c, an English word splitting program

 *

 * Description: This program splits its input into a list of lower-case

 * words, with one word per line. Words are defined as

 * contiguous sequences of alphabetic characters, hyphens,

 * and apostrophes. Words must begin with an alphabetic

 * character. All other characters are discarded.

 */

#include <stdint.h> /* Include C’s standard integer header file. */
#include <stdio.h> /* Include C’s standard I/O header file. */

static const int32_t max_word_len = 500; /* limit on word length */

/* My favorite exit condition definitions. */

enum {
 EXIT_SUCCEED = 0,
 EXIT_FAIL = 1,
 EXIT_BAD_ARGS = 2,
 EXIT_PANIC = 3
};

/*

 * Function: main

 * Description: read a file one character at a time, break input into

 * lower-case words (alphabetic, hyphens, or apostrophes),

 * and print words found on separate lines without eliminating

 * duplicates. Hyphens and apostrophes are not allowed to

 * start words.

 * Parameters: argc -- the number of arguments, including the executable name

 * argv -- an array of strings containing each argument

 * argc must equal 2, and the second argument is the file name

 * from which words are read

 * Return Value: EXIT_SUCCEED for success

 * EXIT_FAIL if file cannot be opened

 * EXIT_BAD_ARGS if the wrong number of arguments are given

 */

int

main (int argc, char* argv[])
{
 FILE* in_file; /* input stream */
 char buf[max_word_len + 1]; /* holds current word */
 char* write; /* end of current word */
 int32_t word_len; /* length of current word */
 int32_t a_char; /* last character read */

 /* Program must receive exactly two arguments. */
 if (2 != argc) {
 /* Print an error message. argv[0] is the executable name. */
 fprintf (stderr, "syntax: %s <file name>\n", argv[0]);
 return EXIT_BAD_ARGS;
 }

 /* Open the file for reading. */
 if (NULL == (in_file = fopen (argv[1], "r"))) {
 /* fopen failed: print an error message to stderr. */
 perror ("open file");
 return EXIT_FAIL;
 }

 /* Initialize the word writing variable to point to the start of
 the word buffer. */

 write = buf;
 word_len = 0;

 /* Read characters until we find the end of the input. */
 while (EOF != (a_char = getc (in_file))) {

 /* If necessary, change input character to lower case. */
 if (’A’ <= a_char && ’Z’ >= a_char)
 a_char = a_char - ’A’ + ’a’;

 /* Can character be part of a word? */
 if ((’a’ <= a_char && ’z’ >= a_char) ||
 (0 < word_len && (’-’ == a_char || ’\’’ == a_char))) {

 /* Write the character into our word buffer and increment
 the pointer and counter. */

 *write++ = a_char;
 word_len++;

 /* Do we still have room in the buffer? If so, read
 another character (skip to next loop iteration). */

 if (max_word_len > word_len)
 continue;
 } else {
 /* Invalid character read. Is there a word that needs
 to be written out? If not, skip to next character. */

 if (0 == word_len)
 continue;
 }

 /* Write out the current word, then reset the buffer pointer
 and character count. */

 *write = 0;
 puts (buf);
 write = buf;
 word_len = 0;
 }

 /* Any last words? */
 if (0 < word_len) {
 *write = 0;
 puts (buf);
 }

 /* Close the input file, ignoring any errors. */
 (void)fclose (in_file);

 /* Program finished successfully. */
 return EXIT_SUCCEED;
}

