04/10/18
13:00:17

* E
*

D

*
*
*
*
*
*
*

*/

#inc

#include <stdio.h>

stat

CE220 Spring 2018 (update from Fall 2005)

Program name: word_split.c, an English word splitting program

escription: This program splits its input into a list of lower-case
words, with one word per line. Words are defined as
contiguous sequences of alphabetic characters, hyphens,
and apostrophes. Words must begin with an alphabetic
character. All other characters are discarded.

/* Include C’s standard integer header file. */
/* Include C’s standard I/O header file. */

lude <stdint.h>

ic const int32_t max_word_len = 500; /* limit on word length */

/* My favorite exit condition definitions. */

enum

EXIT_SUCCEED =
EXIT_FAIL =
EXIT_BAD_ARGS =
EXIT_PANIC =

F
D

P

R

EE T S S T T T T

*
AN

int
main

{

{

w N = o

unction: main

escription: read a file one character at a time, break input into
lower-case words (alphabetic, hyphens, or apostrophes),
and print words found on separate lines without eliminating
duplicates. Hyphens and apostrophes are not allowed to
start words.

arameters: argc —-— the number of arguments, including the executable name
argv —-- an array of strings containing each argument
argc must equal 2, and the second argument is the file name
from which words are read
eturn Value: EXIT SUCCEED for success

EXIT FAIL if file cannot be opened
EXIT_BAD_ARGS if the wrong number of arguments are given

(int argc, char* argv([])
FILE* in_file; /* input stream */
char buf [max_word_len + 1]; /* holds current word */
char* write; /* end of current word */
int32_t word_len; /* length of current word */
int32_t a_char; /* last character read */

/* Program must receive exactly two arguments. */

if (2 != argc) {
/* Print an error message. argv[0] is the executable name. */
fprintf (stderr, "syntax: %s <file name>\n", argv([0]);
return EXIT_BAD_ARGS;

}

/* Open the file for reading. */

if (NULL == (in_file = fopen (argv[l], "r"))) {
/* fopen failed: print an error message to stderr. */
perror ("open file");
return EXIT_FAIL;

word_split.c

/* Initialize the word writing variable to point to the start of
the word buffer. */

write = buf;

word_len = 0;

/* Read characters until we find the end of the input. */
while (EOF != (a_char = getc (in_file))) {

/* If necessary, change input character to lower case. */
if (A’ <= a_char && ’'Z’ >= a_char)
a_char = a_char - A’ + ’a’;

/* Can character be part of a word? */
if (('a’ <= a_char && 'z’ >= a_char) ||
(0 < word_len && ('—=’ == a_char || ’\’’ == a_char))) {

/* Write the character into our word buffer and increment
the pointer and counter. */

*write++ = a_char;

word_len++;

/* Do we still have room in the buffer? If so, read
another character (skip to next loop iteration). */
if (max_word_len > word_len)
continue;
} else {
/* Invalid character read. Is there a word that needs
to be written out? If not, skip to next character. */
if (0 == word_len)
continue;

}

/* Write out the current word, then reset the buffer pointer
and character count. */

*write = 0;

puts (buf);

write = buf;

word_len = 0;

}

/* Any last words? */
if (0 < word_len) {
*write = 0;
puts (buf);
}

/* Close the input file, ignoring any errors. */
(void) fclose (in_file);

/* Program finished successfully. */
return EXIT_SUCCEED;

