Name: 3

Problem 1, continued:

Part C (5 points): The C program below is intended to print the numbers from 10 down to O with one number per
line. What does it actually do, and how could you fix it with one simple change?

#include <stdio.h>

int
main ()
{
int x;
for (x = 10; 0 < x; --x) {
printf ("%d\n", x);
}
return 0;
}

Part D*** (5 points): Your friend is developing a magic 8-ball program for the LC-3. He shows you the following
assembly code:

LEA R1, SOURCE

LEA R2, DEST
LOOP LDR RO, R1, #0

STR R2, RO, #0

BRz DONE

ADD R1, R1, #1

ADD R2, R2, #1

BRnzp LOOP
DONE : LEA RO, DEST

TRAP x22 ; PUTS

TRAP x25 ; HALT
SOURCE .STRINGZ "\"My sources say no\""
DEST .BLKW #20

MYDATA .FILL xOFFF

Your friend complains that when he runs this code with his test cases, it never finishes executing (in other words, it
never reaches the HALT trap). Explain why. (Note that the two-character sequence \ " inserts a single quotation mark,
ASCII character x22, into a string.)

Name: 10

Problem 5 (20 points): C and Stack Frames

This question focuses on the program below, and particularly on the stack frames (also called activation records) that
are used by each function in the program.

#include <stdio.h>
/* function declarations */
int bar (int a, int b);

int foo (int* p);

int bar (int a, int b)

{ int x = a + b;
if (0 < a) {
printf ("%d\n", a * b);
}
return x;
}
int foo (int* p)
{
*p = bar (-4, 11);
return 6;
}
int main ()
{
int x = 0;
int y;
y = foo (&x);
bar (x, vy);
return 0O;
}

Part A (3 points): When someone runs the program, what is the order of subroutine calls for the program, starting
from main? In other words, what is the sequence of JSR target over the whole program execution? Give a comma-
separated list, including only the main, foo, and bar functions.

main,

Part B (3 points): What, if anything, is printed by the program?

