
Page 2

Problem 1 (20 points): Testing and Debugging

(10 points) The recursive function shown below is meant to return the factorial of the number N,
but it has a bug. In NO MORE THAN 15 WORDS, describe the bug. Then fix the program.

(the bug) __

__

int factorial (int N)
{
 int next = factorial (N – 1);
 if (1 >= N) {
 return 1;
 }
 return N * next;
}

(10 points) The function below is meant to return the length of a player’s name (or -1 if a NULL
name or player is passed), but it has a bug. In NO MORE THAN 15 WORDS, describe the bug.
Then fix the program.

(the bug) __

__

int player_name_length (const player_t* p)
{
 const char* s;
 int count = 0;

 if (NULL == p->name || NULL == p) {
 return -1;
 }
 for (s = p->name; '\0' != *s; s++) {
 ++count;
 }
 return count;
}

Page 3

Problem 2 (30 points): Linked Lists and Recursion

This problem deals with a linked data structure that is used to store a database of people and their friends. The
list of people is stored as a linked list of person_t's, each of which includes a pointer to a string containing
the person's name, a pointer to the person's list of friends, and a pointer to the next person in the list:

typedef struct friend_t friend_t;
typedef struct person_t person_t;
struct person_t {
 char* name;
 friend_t* friend_list;
 person_t* next;
};

In the linked list of friends, each friend_t includes a pointer to a person_t (the particular friend), and a
pointer to the next friend in the linked list of friends:

struct friend_t {
 person_t* friend;
 friend_t* next;
};

For this problem, you must complete a recursive function called circle_n to determine whether two people
are within distance N of one another in the circle of friends. A person is distance 0 from himself, distance 1
from everyone in his friend_list, distance 2 from friends of friends, and so forth.

On the next page, you will see that Prof. Lumetta has started to write the function for you. The three arguments
to the function are p, a pointer to the person of interest, f, a pointer to the person’s target friend, and N, the
maximum distance between the person and the target friend. The function must return 1 if the distance
constraint is satisfied, and 0 otherwise.

Page 4

Problem 2, continued:

int circle_n (person_t* p, person_t* f, int N)
{
 friend_t* check;

 if () { return 0; } // blank #1

 if () { return 1; } // blank #2

 for (check = p->friend_list; NULL != check;

) { // blank #3

 if (circle_n (, // blank #4

 , // blank #5

)) { // blank #6
 return 1;
 }
 }
 return 0;
}

Circle EXACTLY ONE ANSWER to indicate what should appear in each blank in the code above.

(5 points): blank #1

A) p != f B) 0 == N C) 0 > N D) 0 >= N E) p == f

(5 points): blank #2

A) 0 == N B) NULL == p C) f != p D) p == f E) 0 >= N

(5 points): blank #3

A) p = p->next B) check = C) check = D) check++ E) f = f->next
 check->next f->friend_list

(5 points): blank #4

A) check->friend B) f C) p D) check E) p->next

(5 points): blank #5

A) check->friend B) p C) f D) N + 1 E) p->next

(5 points): blank #6

A) N B) check C) 1 D) N - 1 E) p->next

Page 5

Problem 3 (20 points): Data Structures in Memory

This problem refers to the same data structures that were used in Problem 2. Shown below on the left is C code
defining these data structures along with the variables i, ptr, x, and str_p. Shown on the right is the
LC-3 memory at runtime.

 C code: LC-3 Memory

struct person_t {
 char* name;
 friend_t* friend_list;
 person_t* next;
};
struct friend_t {
 person_t* friend;
 friend_t* next;
};
int i;
int* ptr;
friend_t* x;
char** str_p;

Complete the table below by indicating the value and C type for each expression in the left column. If the
expression is a structure, provide the start and end address of the structure (for example,
Mem[start_addr : end_addr]) instead of a value. The first two rows of the table have been completed for you.

Expression Value C type
i x1337 int
&i x4010 int *
ptr
*ptr
&ptr
x->friend
*str_p
*(x->friend)
x->friend->next
&(x->friend->friend_list)
&(x->friend)
x+1

Address Data Comments
x4001 x3050
x4002 x4008
x4003 x400B
x4004 x4008
x4005 x0000
x4006 x400B
x4007 x400E
x4008 x3021
x4009 x400B
x400A x4001
x400B x3073
x400C x4008
x400D x4001
x400E x4001
x400F x4004
x4010 x1337 i
x4011 x4010 ptr
x4012 x4006 x
x4013 x400B str_p

Page 6

Problem 4 (30 points): Dynamic Allocation and I/O

Prof. Lumetta has started to implement the Codebreaker server that we discussed in class. As a starting point,
he created the person_t structure below to hold a player’s name and password. Players are to be kept in a
cyclic, doubly-linked list using the prev and next fields of the structure.

typedef struct person_t person_t;
struct person_t {
 char* name; // dynamically-allocated copy of name
 char* password; // dynamically-allocated copy of password
 person_t* prev; // previous player in list
 person_t* next; // next player in list
};

Next, Prof. Lumetta tried to write a subroutine to read player names and passwords from a file. Each player
appears as two consecutive lines in the file. The player’s name in on the first line, and their password is on
the second line. Names and passwords are not allowed to include white space (space, tab, carriage return, new
line), so he realized that he can use fgets together with sscanf to read the first word—either a name or a
password—from each line.

Lumetta’s subroutine (shown on the next page) is called read_player_list. The parameters are a fake
player that forms the sentinel for the cyclic, doubly-linked list (as discussed in class) and a filename. The fake
player has already been initialized to serve as an empty list. The function reads all players from the named
file, dynamically allocates players, and inserts them at the end of the list. In other words, after the routine
executes, following the next links from fake should produce the same order of players as found in the file.

The function must perform all error checks and cleanup, such as freeing unused memory and closing
files.

The function returns the number of players read and inserted into the list, or -1 if an error occurs before any
players are inserted (if an error occurs after inserting players, the function still returns the number of players
inserted). As you might expect, Lumetta has left blanks for you to fill in. Fill in the blanks—note that this
problem is NOT multiple choice. Write your code directly in the blanks. You may not modify any code
outside of the blanks.

An example of the player file format appears below.

Lumetta
Secret!
Dang
H4ck4r
Lam
9999998999
Huy
default

Page 7

Problem 4, continued:

// (structure definition replicated for your convenience)
typedef struct person_t person_t;
struct person_t {
 char* name; // dynamically-allocated copy of name
 char* password; // dynamically-allocated copy of password
 person_t* prev; // previous player in list
 person_t* next; // next player in list
};

int read_player_list (person_t* fake, const char* filename)
{
 FILE* f; // the file to read
 char buf[200]; // one line from the file
 char word[200]; // one word from a line
 person_t* p; // a new player (must be dynamically allocated)
 int n_players = 0; // number of players inserted into list

 f = fopen (______________________________ , "r");
 if (NULL == f) {
 return -1;
 }
 while (NULL != fgets (buf, 200, f) && 1 == sscanf (buf, "%s", word)) {

 p = malloc (______________________________);
 if (NULL != p) {

 p->name = ______________________________ ;
 if (NULL != p->name) {
 if (NULL != fgets (buf, 200, f) &&
 1 == sscanf (buf, "%s", word)) {
 p->password = strdup (word);
 if (NULL != p->password) { // insert p into list

 ______________________________ ;

 ______________________________ ;

 ______________________________ ;

 ______________________________ ;

 ______________________________ ;
 n_players++;
 continue;
 }
 }

 ______________________________ ;
 }
 free (p);
 }
 if (0 == n_players) {
 fclose (f);
 ______________________________ ;
 }
 break;
 }
 fclose (f);
 return n_players;
}

