
11/16/2016

University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Assembly Language

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 1

Review Our Process for Programming

Step 1: Figure out the instruction sequence.
Step 2: Map instructions and data

to memory addresses.
Step 3: Calculate and fill in relative offsets.
Step 1 is hard.
Steps 2 and 3 are … counting.

That’s the fun part!
But maybe some of us might get bored.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

We can program a computer to do these.

We have do this part (computers are dumb).

Can a Computer Help Us Program?

Step 1: Figure out the instruction sequence.

Step 2: Map instructions and data
to memory addresses.

Step 3: Calculate and fill in relative offsets.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

A Typical Programming Process

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

file

process

symbol
meaningshigh-level

language

produced by
programmer

compiler

assembly
code

assembler

binary loader

Labs 10 & 11

Labs 12-14

ECE220

today’s
lecture

11/16/2016

Assembly Language is Written One Line at a Time

Here’s the line format:

label opcode operands ; comment

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

These elements
are optional.

symbolic name for a memory location

mnemonic, such as ADD or BRn

Examples of LC-3 Assembly Language

Here are a couple of examples…

INFLOOP BRnzp INFLOOP ; get it?

LD R3,INFLOOP

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

Labels name
memory locations.

Assembly Language Supports Directives and Pseudo-Ops

Assembly language also supports*

◦directives, which provide information
to the assembler, and

◦pseudo-ops, which are shortcut notation
for various types of bits.

*Most people do not distinguish between these
two elements of assembly language.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

LC-3 .ORIG Directive Must Appear Once at Start

The .ORIG directive tells the assembler
where to start writing bits in memory.
For example:

.ORIG x3000

This directive
◦must appear exactly once in any
assembly file, and

◦must appear before any lines that
generate bits (only comments can
precede .ORIG).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

11/16/2016

LC-3 .END Directive Ends the File

The .END directive tells the assembler
to stop reading the file.
For example:

.END
Any lines after the .END directive
are ignored by the assembler.
Generally, one should always put it
at the end of the file to avoid confusion.
Note that .END is NOT a HALT (TRAP x25).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

LC-3 .BLKW Directive Skips Over Memory Locations

The .BLKW directive tells the assembler
to leave blank words in memory.
For example:

.BLKW #30

skips 30 memory locations.
Do not assume that these locations
are filled with 0s.
(Although they will be by the LC-3
assembler, not all assemblers do so.)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

When Would One Use .BLKW?

Remember when we wrote code
◦ to read a number from the keyboard
◦and store the typed value in memory?

That’s one case in which we use .BLKW:
◦We need a place in memory.
◦But we don’t need it initialized.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

LC-3 .FILL Pseudo-Op Allows Us to Write Specific Bits

What if we want to write data bits into
memory?
The .FILL pseudo-op tells the assembler to
write a specific 16-bit value into the next
memory location.
For example:

.FILL xFFD0

writes the bits 1111 1111 1101 0000 into the
next location.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

11/16/2016

LC-3 .STRINGZ Pseudo-Op Allows Us to Write Strings

The .STRINGZ pseudo-op tells the assembler
to write a NUL-terminated ASCII string
into memory.
For example:

.STRINGZ "Hello!"

ASCII characters (zero-extended to 16 bits)
are written into consecutive memory
locations, and followed by a NUL (x00) in
another memory location.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13

.STRINGZ Always Writes a NUL

Don’t forget that .STRINGZ always writes a
NUL after the ASCII characters in the string.
So the number of memory locations
needed is the number of characters + 1.
How many memory locations for …

.STRINGZ "One..." ?

.STRINGZ "Two?" ?

.STRINGZ "3" ?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

7
5
2

Use Traps by Name in LC-3 Assembly Language

The LC-3 assembler also supports
pseudo-ops for TRAP instructions.
The ones that you have seen* are…
GETC ; TRAP x20

OUT ; TRAP x21

HALT ; TRAP x25

*Patt & Patel p. 543 has a couple more.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15

What’s the Advantage of Assembly?

Let’s pretend that we’re writing our letter
frequency program in assembly.
You can read and get the code (in both forms)
on our web page.
But here I want to pretend
◦ that we are writing it
◦ in order to highlight the
advantages of assembly.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

11/16/2016

Writing the Letter Frequency Program in Assembly

Let’s get started…

.ORIG x3000
; I don’t feel like writing
; initialization yet. In assembly,
; I can come back later with no
; worries. The assembler will
; recalculate offsets.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 17

Let’s start our
code here.

Labels Make Programming Much Easier

Let’s write the counting part…

COUNTLOOP LDR R2,R1,#0

BRz

DONE HALT

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 18

Found the end
of the string.

Where do we go?

Just make up
a name!DONE

Make up a name: we’ll need to come back.

We can even
write that code first!

Assembler will calculate the BRz offset for us!

What is a Label, Exactly? A Memory Address!

A label represents an address.

COUNTLOOP LDR R2,R1,#0

BRz

DONE HALT

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 19

… is at this address.
When BRz is

taken, PC
changes to this

address.

DONE

This instruction

Next, Compare with Capital A

What’s next? Compare with capital A.

COUNTLOOP LDR R2,R1,#0

BRz DONE

ADD R2,R2,R3

BRp

AT_LEAST_A ; placeholder for later

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 20

AT_LEAST_A
Found a

character >= 'A'.
Where do we go?

Again, just
make up
a name!

11/16/2016

Increment the Non-Alphabetic Bin

What’s next? Compare with capital A.

NON_ALPHA LDR R6,R0,#0

ADD R6,R6,#1

STR R6,R0,#0

BRnzp

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 21

GETNEXTDone with
this character.

Where to?

Again, just
make up
a name!

We could add this name now or later.

Place Data After the Code (But Before .END!)

What about data? After the code…
NUM_BINS .FILL #27

NEG_AT .FILL xFFC0

STR_START .FILL STRING

HIST .BLKW #27

STRING .STRINGZ "Example."

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 22

Now, we can easily place the histogram
and string behind the code.

