University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing

Letter Frequency Planning

Time to Write Another Program

Let's say that we want to do the following: - given an ASCII string (a sequence of characters terminated by a NUL, ASCII x00),

- count the occurrences of each letter (regardless of case), and
- count the number of non-alphabetic characters.

ECE 120: Introduction to Computing

- 2016 Steven S. Lumetta. All rights reserved.
slide 2

These Are Examples of Histograms

We Need to Count Each Kind of Letter

So we want a set of counts for a string:

- How many A's (either case)?
- How many B's?
- ...
- How many Z's?
- How many non-alphabetic characters?

How would you perform this task?

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved
side 5
e 5

Let's Do an Example

"Try this string as an example."
How many A's? 3
How many B's? 0
How many C's? 0
How many D's? 0
How many E's? 2

ECE 120: Introduction to Computing
O 2016 Steven S. Lumetta. All rights reserved.
slide 6

Algorithm 1: Look Through String Once for Each Letter

Another Example: a Book

Maybe something like this?
for each letter (and once for non-letters)
count $=0$
for each character in the string
if character matches letter (either case)
count $=$ count +1
store count for the letter in histogram
Second example: the Patt and Patel textbook.
How many A's? 61,341
How many B's? 10,821
How many C's? Do you really think
How many D's? I counted these?
How many E's?
Would you approach the problem
differently with a longer string?

ECE 120: Introduction to Computing
$\bigcirc 2016$ Steven S. Lumetta. All rights reserved.
silde 8

Algorithm 2: Look through String Once

For a longer string, maybe we just want to look through it once?
initialize 27-bin histogram to all 0 s
for each character in the string
increment the appropriate histogram bin

But figuring out which bin to increment may be complicated.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 9

Algorithm 3: Build a Bigger Histogram

What if we build a bigger histogram first:
initialize 128 -bin histogram to all 0 s
for each character in the string
increment bin for that character for each letter
add the two corresponding bins sum all non-letter bins
Now finding the bin is easy, but we need extra memory and computation.

Which Algorithm is Best?

Which approach is better?
What is the metric?

- Number of instructions executed?
- Number of clock cycles (time) required?
- Amount of memory needed?

Does our answer depend on the length of the string?
What if the string is sorted alphabetically?

Let's Pick Algorithm 2

The answer depends on the context and the application of our program.
We're going to go with Algorithm 2:
initialize 27-bin histogram to all 0 s
for each character in the string
increment the appropriate histogram bin
Why? Implementing the complex decision in the middle will be interesting.

