Combinational Logic Design Allows Use of Abstraction

Recall combinational logic design.
◦ One can always design from gates (or even transistors),
◦ but it’s often easier to build with components such as adders, comparators, muxes, and decoders.

We use common functionality
◦ addition, comparison, selection, and identifying encoded values (respectively)
◦ to abstract away details of low-level logic.

FSM Designs Also Allow Use of Abstraction

The same holds for FSMs:
◦ one can always design every state,
◦ but often we want to organize an FSM hierarchically,
◦ and analyze states in groups rather than individually.

We can use both combinational logic components and sequential logic components such as registers and shift registers to simplify the design task.

Let’s Extend Our Keyless Entry FSM

As you may recall, our FSM design only reacted to user input (the ULP buttons).
For example,
◦ if a user pushes the panic button P,
◦ and then does nothing more,
◦ the FSM stays in the ALARM state,
◦ and the alarm sounds forever (until the car battery dies).

Let’s modify the design to make the FSM turn the alarm off after some time.
A Quick Review of I/O for Keyless Entry

Outputs are as follows:
- **D**: driver door; 1 means unlocked
- **R**: remaining doors; 1 means unlocked
- **A**: alarm; 1 means alarm is sounding

And inputs are as follows:
- **U**: unlock button; 1 means it’s been pressed
- **L**: lock button; 1 means it’s been pressed
- **P**: panic button; 1 means it’s been pressed

Also Review the State Table

The state table below gives the state IDs and the outputs for each state.

<table>
<thead>
<tr>
<th>Meaning</th>
<th>State</th>
<th>(S_0 S_1)</th>
<th>D</th>
<th>R</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle locked</td>
<td>LOCKED</td>
<td>00 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver door unlocked</td>
<td>DRIVER</td>
<td>10 1 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All doors unlocked</td>
<td>UNLOCKED</td>
<td>11 1 1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm sounding</td>
<td>ALARM</td>
<td>01 0 0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

And, Finally, the State Transition Diagram

Start by Extending the Abstract Model

So what exactly do we want to change?
After a user turns on the alarm, the FSM should start measuring time.
Once a certain amount of time has passed, the FSM should turn off the alarm.

In what unit can an FSM measure time?
In clock cycles.

What component can we use? A counter.
Use a Binary Counter to Measure Time

Let’s use a binary down counter with a load input \(LD \).
- When \(LD = 1 \), the counter loads a new value (from the above in the figure).
- The counter bits represent an unsigned value.
- The count (stored value) goes down towards 0.
- When the count reaches 0, the counter outputs \(Z = 1 \).

You know how to build one.

The Counter Creates New I/O Signals

The counter gives our FSM new inputs and outputs.
Counter output \(Z \) is an input to the FSM.
To control the counter, the FSM must output
- \(LD \), the counter load signal, and
- the counter input value.
Since we only want to use a fixed timeout, let’s hardwire the value input.

How Big is the Counter?

The number of bits in the counter depends on \(T \), which in turn depends on the clock speed.
For example,
- if we want a 5-minute timeout (300 seconds),
- and the clock speed is 16 MHz (\(1.6 \times 10^7 \) cycles/second),
- we need \(T = 4.8 \times 10^9 \) cycles,
- and a 33-bit counter.

The Counter Bits are FSM State

Let’s use the counter bits (denoted \(\text{timer} \)) to split the \textit{ALARM} states into many states.
Whenever the user turns on the \textit{ALARM}, the system will enter the \textit{ALARM(0)} state by setting \(\text{timer} = T - 1 \) (by setting \(LD = 1 \)).
Then the counter counts down...
Replicate Outgoing Arcs

We replicate outgoing arcs from ALARM.
So each of the states below has an arc labeled ULP=x10 to the LOCKED state.

Time for Some Design Decisions

What if the user pushes panic (P)?
Just keep counting? Or reset the timer?
Let’s reset the timer. So all transitions with ULP=x1 (not shown) enter ALARM(0).

When the Timeout Happens, the FSM Turns Off the Alarm

What happens when timer reaches 0?
The counter outputs $Z = 1$, which the FSM can use to leave the ALARM state.
Where should it go? Let’s say LOCKED.

Treat the Other Three States as Single States

The timer bits are part of the FSM state.
What about the other three states in the original design (LOCKED, DRIVER, and UNLOCKED)?
These states are also split into many new states!
But their behavior is independent of the timer bits.
So we continue to treat them as single states.
Two Issues Need to be Addressed by the Implementation

Now let’s think about implementation. Can we reuse the old design? Yes!
We have two issues to address:
1. Set \(\text{timer} = T-1 \) when entering \(\text{ALARM}(0) \).
2. Move from \(\text{ALARM} \) to \(\text{LOCKED} \) when \(Z = 1 \).

The counter handles the transitions from \(\text{ALARM}(t) \) to \(\text{ALARM}(t+1) \).

When Should the Counter Load a New Value?

1. Set \(\text{timer} = T-1 \) when entering \(\text{ALARM}(0) \).
Recall that we enter \(\text{ALARM}(0) \) iff the \(P \) button is pressed. So…
(What should we do?)
...and we’re done!

Simplify the Implementation with a Mux

2. Move from \(\text{ALARM} \) to \(\text{LOCKED} \) when \(Z = 1 \).
\(\text{ALARM} \) is \(S_1S_0 = 01 \).
\(\text{LOCKED} \) is \(S_1S_0 = 00 \).
So we only need to change \(S_0^* \). How?
Let’s use a mux:
- the 0 input comes from the original \(S_0^* \) logic.
- the 1 input is 0 (to reach \(S_1S_0 = 00 \)).

Calculating the Mux Select is the Hardest Part

What controls the mux select?
We want to force the \(\text{ALARM} \) to \(\text{LOCKED} \) transition when …
- The system is in \(\text{ALARM} \) \((S_1S_0 = 01) \),
- AND \(\text{ULP} = x00 \),
- AND \(Z = 1 \).
So the mux select signal is \(S_1'S_0'P'Z \).
But if we press \(L \), we also move to \(\text{LOCKED} \).
So we can simplify to \(S_1'S_0'PZ \).
Here’s the Extended Implementation

Output logic is also the same.